Long term Magneto-thermal evolution of neutron stars: the roles of the Hall drift amb ambipolar diffusion

José A. Pons

It is generally accepted that the nonlinear, dynamical evolution of magnetic fields in the interior of neutron stars plays a key role in the explanation of the observed phenomenology (temperatures, luminosities, spin period and derivative). Understanding the transfer of energy between toroidal and poloidal components, or between different scales, is of particular relevance. In this talk I discuss the general aspects of the long term magnetic and thermal evolution, with particular emphasis in the role of the Hall drift and ambipolar diffusion for typical magnetar conditions

Meeting ID:  854 3210 3337        Password: 959078

Bubble dynamics from holography

David Julián Mateos Solé (Universitat de Barcelona)

Cosmological phase transitions proceed via the nucleation of bubbles that subsequently expand and collide. The resulting gravitational wave spectrum depends crucially on the bubble wall velocity. Microscopic calculations of this velocity are challenging even in weakly coupled theories. I will show how to use holography to compute the wall velocity from first principles in strongly coupled, non-Abelian, four-dimensional gauge theories. No previous knowledge of holography or string theory required.

Meeting ID:  854 3210 3337        Password: 959078