

The Kavli Institute for Astronomy and Astrophysics at Peking University 北京大学科维理天文与天体物理研究所

北京大学物理学吃

School of Physics, Peking University

Two types of glitches in a solid quark star model

Enping Zhou Supervisor: Prof. Renxin Xu & Prof. Luciano Rezzolla 2015.01.13

Outline

Pulsar = Neutron Star??

• Wiki tells us "Pulsar is highly magnetized rotating Neutron star". But not exactly!

Up: An imaginary model of magnetized rotator model for 'pulsar'

Twinkle, twinkle, little star How I wonder what you are

Down: An observed profile in the radio telescope, which is 'a pulsar'.

Pulsar \neq Neutron star

Different EoS models for pulsars (Xu 2014)

2015/1/13

model

Puzzling Pulsar Inside: EoS...

•Nucleus and Quark-cluster star:

differences and similarities

Xu, 2014 Presentation in CSQCD IV

Neutron Star .vs. Quark Star

- From observational point of views:
 - The absence of spectrum lines in pulsar spectrums Neutron Star : crust with mostly iron atoms. remark: 1E 1207.4-5209 Quark Star: bare, no atomic structure
 - The binding energy Neutron Star: gravity/em bound on the surface Quark Star: self bound on the surface
 - The iron core collapse model of Type II supernova Neutron Star: optically thick remark: <u>arXiv:1501.01961</u> Quark Star: optically thin for neutrino

> Glitches

to be discussed today...

Pulsar glitch

- An important phenomenon to help us understand the EoS of dense matter.
- Normal glitch / Slow glitch / Anti glitch ...
- The mechanism is still a matter of debate.

Glitch: sudden spin up of pulsars. First observed on Vela pulsar (1969) A 195ns decrease in the spin period was detected by Radhakrishnan & Manchester

Pulsar Glitch

The quadratic signature of the timing residuals during the glitch (glitch detectors)

Espinoza et al. 2012

Observational parameters of pulsar glitch

model

Pulsar glitch

As the development of glitch observations, more and more challenges to the previous theories remain to be solved.

Challenge 1

Radiative quiet glitches of Vela pulsar $\delta v/v \sim 10^{-6}$ negligible energy release in observations (Helfand et al. 2001)

Challenge 2

Radiative loud glitches of AXP/SGRs $\sim \delta v/v \sim 10^{-6}$ X-ray bursts & radiative anomaly (Dip & Kaspi 2014)

Starquake models in Solid quark stars

Quakes in solid quark starsZhou A Z, et al.2004 Astro-Particle Journal

Pulsar slow glitches in a solid quark star modelPeng & Xu20082008MNRAS

Two types of glitches in a solid quark star modelZhou E P, et al.20142014MNRAS

The model – bulk variable starquake

The M-R relation for solid quark stars

Physical scenario Self-bound (low mass) $M^{\sim}R^3$

Gravity-bound (high mass) $M \nearrow R \searrow$

Exceeding the R_m by accretion will make a solid star accumulate elastic energy and induce a starquake which can be seen as a global reduce of the radius

two types of glitches in a solid quark star model

Bulk variable starquake

Type II starquake can be treated as a global decrease in R.

δR

The main parameter in a Type II starquake: δR

E w.r.t
$$\delta R$$
 $\delta E = \left(\frac{3GM^2}{5R} - \frac{L^2}{I}\right)\frac{\delta R}{R}$

- Gravitational energy of a spheroid + kinetic energy
- Conservation of the angular momentum

$$\frac{\delta\omega}{\omega} = -\frac{\delta I}{I} = -\frac{2\delta R}{R}.$$

• The moment of inertia of a spheroid

Result
$$|\delta E| = \frac{3GM^2}{10R} \frac{\delta \nu}{\nu} \sim 10^{47} \operatorname{erg}(\frac{M}{1.4 M_{\odot}})^2 (\frac{R}{10^6 \operatorname{cm}})^{-1} (\frac{\delta \nu}{\nu}/10^{-6})$$

• The gravitational energy is much larger than the kinetic energy

The model – bulk invariable starquake

The stable shape of a rotating star will be ellipsoid instead of spheroid.

$$E_{total} = E_k + E_g + E_{el} = E_0 + \frac{L^2}{2I} + A\varepsilon^2 + B(\varepsilon - \varepsilon_0)^2$$

The key parameter in a Type I starquake: $\varepsilon = (I - I_0)/I_0$

For a rotating star with certain density ρ , the relation between ellipticity and angular velocity is

$$\Omega^2 = 2\pi G\rho[\frac{\sqrt{1-e^2}}{e^3}(3-2e^2)\sin^{-1}e - \frac{3(1-e^2)}{e^2}]$$

Remark: Jacobi ellipsoid for extremely fast spinning pulsars

The model – bulk invariable starquake

The evolution between two glitches

Solidification or the end of previous glitch t=0

No elastic energy

Normal spin down phase

- The difference between ε and ε_{mac}
- Elastic energy accumulated

 $t = t_1 - 0$

- The glitch epoch
- Elastic energy reaches the critical value

Glitch

- The elastic energy is released and the pulsar can be treated as fluid
- The shape changes and a new equilibrium is set up at the end of the glitch

The model – bulk invariable starquake

- Note that the spin down power and interval between two glitches also affect the energy released
- The observational data of Vela is applied

2015/1/13

The result

fainter than the first). Thus, the 3 σ limit on any increase in the pulsar luminosity in response to energy input from the glitch is less than 1.2×10^{30} ergs s⁻¹ or $\Delta T \sim 0.2\%$, 35 days (3 × 10⁶ s) after the event.² The lower half of Figure 5

 $4 \times 10^{36}/(3 \times 10^{6})=1.3 \times 10^{30}$ erg/s

Zhou et al. 2014

Helfand et al. 2001

Discussion

 AXP/SGRs: observational hints of accretion (Wang et al. 2006) slow rotators (~10s)

fall back disc + quark star model (Tong & Xu 2011)

implies **Type II** • Vela like pulsars: no hints for accretion fast rotators (~<1s)

- implies **Type I**
- Possible mechanism for Anti-glitches?

Discussion

 The neutron star crust cracking model (Baym & Pines 1976) failed to explain the glitch on Vela because of the short intervals (~1 month, for largest glitches ~1 year)

$$t_{\text{interval}} = \frac{2(A+B)\left(\frac{A}{B}\right)\left(\frac{\Delta\Omega}{\Omega}\right)}{I\Omega\dot{\Omega}},$$

For quark stars it's no longer a problem because the entire star is in solid state, what matters is the initial ellipticity when the pulsar became solid.

Suggesting that the initial ellipticity for Vela is 0.01 (P~4ms), there could be 10^4 glitches with $\Delta\Omega/\Omega$ ~10^-6 during the lifetime of Vela, which is coincident with the observation.

Conclusion

- There should be two types of starquakes in a solid quark star model : Type I (bulk invariable) & Type II (bulk variable)
- We figure out the energy release of the two types of starquakes, and find out that Type II starquake is much more energetic than Type I.
- Considering other observational features, we think that the two types of glitches in a solid quark star model can account for the two types of glitches in observation.

• Thanks!