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Black Hole Geodesics

• The Kerr (spinning) black hole is an exact solution of the 
Einstein field equations

• From the metric we may construct the following Lagrangian:

• From the Euler-Lagrange equations we may obtain the 
relevant ODEs which may be solved, given appropriate initial 
conditions, yielding the geodesics of photons and particles



Black Hole Geodesics
• Four constants of motion (μ, E, Lz, Q) allow problem to be 

reduced to one of quadratures, yielding 4 ODE’s:

• However, square roots in the red ODEs for r and θ 
introduce ambiguity in their signs at turning points



Black Hole Geodesics
• At the expense of solving 2 additional ODEs we may 

circumvent this problem:



Schwarzschild Geodesics



Kerr Geodesics 
(a=0.998)



‘Seeing’ a Black Hole
• Although ‘invisible’, its presence is revealed through its 

interaction with nearby matter and radiation

• A black hole acts as a gravitational lens

• Radiation moving in its vicinity is not just deflected but also 
lensed due to the intense gravitational field

• To ‘see’ it, we must construct an observer grid and specify 
each photon by co-ordinates on this grid - each photon is 
now a pixel: integration is performed backwards in time

• To calculate an image we must specify for each ray the initial 
conditions 



Ray-Tracing Initialisation
• Observer grid represented 

by green axes

• z-axis of observer oriented 
towards black hole center

• x- and y-axes oriented as 
shown

• Black hole spin axis and z’ 
axis taken to coincide

• Although φobs is arbitrary we 
keep it as a free parameter

Text



Ray-Tracing Initialisation
• Calculate observer’s co-ordinates in black hole co-ordinates: 

• We may then use the transformation between BL and Cartesian 
co-ordinates to calculate the I.C’s                         for the ray:

• Determine initial velocity of the ray in black hole co-ordinates:



Ray-Tracing Initialisation
• The initial conditions of the ray may now be written as: 

• With the initial conditions                                      we may 
now ray-trace an image 

• In practical calculations we set M =1, which is equivalent to 
normalising the length scale to units of the gravitational radius



‘Seeing’ a Black Hole



Black Hole Shadow

x[rg]

y[
r g

]



(Classical) Radiative 
Transfer

Intensity

Path Length

Absorption

Emission

Optical Depth Source Function

Scattering



• Two important conserved quantities result:

      (1) conservation of particle number in the bundle

      (2) conservation of phase space volume, i.e.

Covariant Radiative 
Transfer

• Consider a bundle of particles threading a phase space volume 
defined as

• These two conserved quantities imply an invariant quantity:

affine parameter



Covariant Radiative 
Transfer

• For relativistic particles:

• The specific intensity of a ray is given by:

Lorentz invariant intensity



Covariant Radiative 
Transfer

• The velocity of a particle in the co-moving frame of a medium is:

• The variation in path length w.r.t. affine parameter is given by:

• The energy shift is:



Covariant Radiative 
Transfer

• Optical depth, τ, is an invariant quantity

• Lorentz invariant absorption coefficient:

• Lorentz invariant emission coefficient:

• We may now write down the Lorentz invariant RT equation as:



General-Relativistic 
Radiative Transfer

• We may solve the GRRT equation and obtain the intensity as:

         where the optical depth is defined as:

• We may now decouple the GRRT equation into two ODEs:



GR Radiative Transfer

• Specify space time metric

• Solve photon geodesics

• Solve RTE along geodesics

• Assume as a first test a 
geometrically thin, optically 
thick disk (Shakura & Sunyaev 1973)

• Disk scale height negligible 
compared to its radial 
extent, effectively 2D

Adapted from C.M. Urry and P. Padovani



The Formation of an 
Emission Line 

Fabian et al. 2000 Tanaka et al. 1995, Nandra et al. 1997



Optically Thick 
Accretion Disk

Energy shift Emission line profile



Optically Thick 
Accretion Tori 

• Assume optical depth τ>>1

• Internal structure irrelevant

• Solve torus equations of motion to determine parametric 
equations describing emission boundary surface

• Specify angular velocity profile for torus:

• Torus is supported by pressure forces arising from the 
differential rotation of neighboring fluid elements

• Torus is stationary, axisymmetric and rotationally supported



Optically Thick 
Accretion Torus

Energy shift Emission line spectrum
E/E0

F(
E)



Optically Thick 
Accretion Torus

Intensity Emission line spectrum



Optically Thin 
Accretion Tori

• Construct a general relativistic perfect fluid:

• The momentum equation yields, for a static, axisymmetric 
configuration:

• Total pressure within torus is the sum of the gas and 
radiation pressures:



Optically Thin 
Accretion Tori

• Assume a polytropic equation of state for the fluid within the 
torus to close the system of equations for pressure:

• Inserting this into the fluid equations yields the torus density 
structure:

Define a new variable:



Optically Thin 
Accretion Tori



Emission From Optically 
Thin Accretion Torus

Intensity



Emission From Optically 
Thin Accretion Torus

Multiple (blended) emission lines from an optically thin accretion torus



Emission From Quasi-
Opaque Accretion Torus
• Consider two opacity sources with emission and corresponding 

absorption coefficients in the rest frame given by:

B2 is chosen such that α0rout=1-5 across the torus



Emission From Quasi-
Opaque Accretion Torus

Intensity



Emission From Quasi-
Opaque Accretion Torus

Intensity



GR Compton Scattering
• When scattering is included the RTE takes the form:

• Solving the above integro-differential equation is analytically 
impossible except in very symmetrical, idealised situations

• A covariant form of the Eddington approximation (e.g. Thorne 
1981, Fuerst & Wu 2006) is needed to reduce the problem to 
solving a system of coupled ODEs 

• No available codes to do this - reliant on Monte-Carlo 
simulations and semi-analytic approaches that are restrictive

/



GR Compton Scattering

• The scattering kernel and its angular moments must be 
evaluated covariantly

• First the Compton scattering cross-section must be rewritten:



GR Compton Scattering
• After some mathematical tricks and physical insight, angular 

moments of the scattering kernel may be written in the 
following symmetrical form:

• The next step is to perform the above integrals



• First change the order of integration:

GR Compton Scattering

• Next define three angular moment integrals:



• Introduce the Gauss Hypergeometric function:

GR Compton Scattering

• This series is absolutely convergent for 

• In all of our calculations 

• The case              may be solved by analytic extension: 



• With the aforementioned hypergeometric function we may 
now write the moment integrals in closed form:

GR Compton Scattering

• There already exist numerical codes to evaluate      accurately 



• We may now write the angular moments of the Compton 
scattering kernel as:

GR Compton Scattering



GR Compton Scattering
• The additional terms are defined as:



The GRCS Kernel 
(zeroth moment)



The GRCS Kernel 
(zeroth moment)

Pomraning 1972



The GRCS Kernel 
(1st - 5th moments)



Conclusions
• GRRT is a powerful tool to calculate the observed images and 

EM emission in general relativistic environments

• The structure of the accretion flow significantly alters both 
the images and the spectrum

• Radiative transfer calculations can deal with the combined 
relativistic, geometrical, optical and physical effects

• Hard to determine key black hole parameters from emission 
spectrum - strongly dependent on many physical effects

• Future work must focus on more comprehensive treatment of 
both radiation processes and the accretion flow



Future Work

• Re-formulate geodesic equations in Kerr-Schild form, 
removing stiffness at event horizon

• Construct interface between GRRT and GRMHD simulations

• Parallelize code in MPI (trivial in OpenMP)

• Consider more radiation processes

• Proper treatment of scattering

• Polarization


