General-Relativistic
Radiative Transfer




Outline

® Background to ray-tracing around black holes

® General-Relativistic (GR) Radiative Transfer (RT) formulation

® GRRT for a geometrically thin and optically thick accretion
disk




Black Hole Geodesics

® The Kerr (spinning) black hole is an exact solution of the
Einstein field equations

® From the metric we may construct the following Lagrangian:




Black Hole Geodesics

® Four constants of motion (M, E, Lz, Q) allow problem to be
reduced to one of quadratures, yielding 4 ODFE’s:
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Black Hole Geodesics

® At the expense of solving 2 additional ODEs we may
circumvent this problem:
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Schwarzschild Geodesics




Kerr Geodesics

(2=0.998)




‘Seeing’ a Black Hole

® Although ‘invisible’, its presence is revealed through its
interaction with nearby matter and radiation

® A black hole acts as a gravitational lens

® Radiation moving in its vicinity is not just deflected but also
lensed due to the intense gravitational field




Ray- [racing Initialisation

* Observer grid represented
by axes

e z-axis of observer oriented
towards black hole center

* Xx- and y-axes oriented as
shown

* Black hole spin axis and 7’
axis taken to coincide

* Although @ops is arbitrary we
keep it as a free parameter




Ray- Tracing Initialisation

e Calculate observer’s co-ordinates in black hole co-ordinates:
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* Determine initial velocity of the ray in black hole co-ordinates:
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Ray- Tracing Initialisation

* The initial conditions of the ray may now be written as:
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‘Seeing’ a Black Hole




Black Hole Shadow
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Classical) Radiative
Transfer

Absorption
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Scattering
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Covariant Radiative
Transfer

® Consider a bundle of particles threading a phase space volume
defined as dV = d°Zd’p

® Jwo important conserved quantities result:

(1) conservation of particle number in the bundle




Covariant Radiative
Transfer

® For relativistic particles:
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Covariant Radiative
Transfer

® The velocity of a particle in the co-moving frame of a medium is:

P = (¢*° + u®uP) kK,

® The variation in path length w.r.t. affine parameter is given by:




Covariant Radiative
Transfer

® Optical depth, T, is an invariant quantity

® |orentz invariant absorption coefficient: X' — VV/(,,




General-Relativistic
Radiative Transfer

® We may solve the GRRT equation and obtain the intensity as:
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where the optical depth is defined as:




GR Radiative Transfer

Yi * Specify space time metric

Observer
* Solve photon geodesics

* Solve RTE along geodesics

Black
Hole

Relativistic e Assume as a first test a
Disk/Torus : : :
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The Formation of an
Emission Line

Newtonian

Special relativity Transverse Doppler shift

Beaming

General relativity Gravitational redshift

Line profile

Fabian et al. 2000 Tanaka et al. 1995, Nandra et al. 1997



Optically Thick
Accretion Disk

Energy shift Emission line profile



Optically Thick
Accretion Tori

® Assume optical depth T>>|

® TJorus is stationary, axisymmetric and rotationally supported

® |Internal structure irrelevant

® Solve torus equations of motion to determine parametric




Optically Thick
Accretion lTorus




Optically Thick
Accretion Torus




Optically Thin
Accretion Tori

® Construct a general relativistic perfect fluid:
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® The momentum equation yields, for a static, axisymmetric
configuration:




Optically Thin
Accretion Tori

® Assume a polytropic equation of state for the fluid within the
torus to close the system of equations for pressure:




Optically Thin
Accretion Tori

Torus Density Cross—Section




Emission From Optically
Thin Accretion Torus




Emission From Optically
Thin Accretion Torus

Multiple (blended) emission lines from an optically thin accretion torus



Emission From Quasi-
Opaque Accretion Torus

® Consider two opacity sources with emission and corresponding
absorption coefficients in the rest frame given by:
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Emission From Quasi-
Opaque Accretion Torus




Emission From Quasi-
Opaque Accretion Torus




GR Compton Scattering

® VWhen scattering is included the RTE takes the form:

® Solving the above integro-differential equation is analytically
impossible except in very symmetrical, idealised situations




GR Compton Scattering

® The scattering kernel and its angular moments must be
evaluated covariantly

® First the Compton scattering cross-section must be rewritten:




GR Compton Scattering

® After some mathematical tricks and physical insight, angular
moments of the scattering kernel may be written in the
following symmetrical form:
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GR Compton Scattering

® First change the order of integration:
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GR Compton Scattering

® Introduce the Gauss Hypergeometric function:
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GR Compton Scattering

® With the aforementioned hypergeometric function we may
now write the moment integrals in closed form:
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GR Compton Scattering

® Ve may now write the angular moments of the Compton
scattering kernel as:
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GR Compton Scattering

® The additional terms are defined as:
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The GRCS Kernel

(zeroth moment)

Electron temperature = 1 keV
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The GRCS Kernel

(zeroth moment)
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Conclusions

® GRRT is a powerful tool to calculate the observed images and
EM emission in general relativistic environments

® The structure of the accretion flow significantly alters both
the images and the spectrum

® Radiative transfer calculations can deal with the combined




Future VWWork

® Re-formulate geodesic equations in Kerr-Schild form,
removing stiffness at event horizon

® Construct interface between GRRT and GRMHD simulations




