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Binary systems NS-NS or NS-BH

merging

GRAVITATIONAL WAVES EMISSION

m Initial phase: point-like approximation, the gravitational
wave does not depend on the internal structure of
neutron stars

m Final phase: neutron stars are deformed due to mutual
tidal interaction and the gravitational wave depends
on their internal structures



Gravitational waves revelation
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Purpose of this thesis

UNDESTANDING OF WHAT IS THE
INTERNAL REGION OF A NEUTRON
STAR THAT MAINLY DETERMINES ITS
DEFORMABILITY,

in order to establish what is the internal
region of a neutron star about which we can
obtain information by measuring
gravitational waves emitted by binary
systems shortly before the merging
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Static and spherically symmetric neutron star

with mass M and radius R (non rotating star)
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Piecewise polytropics

Read, Lackey, Owen, Friedman, Physical Review D79, 124032, 2009

0 €lpinpil = { 4 (E) _

p(p)

Lo

[0i—1,pi], with i = 1,...,n and n number of intervals

p(p) = Kip" : EOS is polytropic
1 : the first principle
—pd (f) of Thermodynamics

o is valid

p2 = 10%gem=3 py =~ 5-10"gem 3

cenfre——— > surface



Tidal deformability A: definition
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Tidal deformability A of a static and spherically symmetric neutron star in an

external tidal quadrupolar gravitational field
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Tidal deformability A of a static and spherically symmetric neutron star in an

external tidal quadrupolar gravitational field
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M RH'(R
C = —, y = —( )
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Hinderer, Astrophysical Journal 677: 1216-1220, 2008

H(r) is the radial perturbation of the Schwarzschild
metric



Estimate of A in the interior of the star
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EOS in decreasing order of produced neutron stars’ compressibility
— -1
x=(rp)
R1, WFF1, APR4,11, 12, ALF2, MS1
stiff, minorC = %4

greater C = ]1\2—4, soft

R1,T1, T2 are defined in Yagi, Stein, Pappas, Yunes, Apostolatos, Physical Review D90, 063010, 2014




Radial profiles of tidal deformability
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Radial profiles of tidal deformability
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What is the physical
internal region (inner
core, outer core, inner
crust, outer crust) that
mainly contributes to

determine A?



Tidal deformability profiles depending on mass

density
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Binary system NS-NS: gravitational wave
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