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Tests of General Relativity (GR)

General relativity has been tested on many scales, but mostly in weak to
moderate-field regime:

Laboratory, Earth and Solar System scale
(v/c<<1 orGM/c2R<<1)), upper bound
for violations by the Cassini mission – 10−5

Binary pulsars: PSR B1913+16, PSR
J0737-3039, PSR J0348+0432 – 0.05%

Galaxies and galaxies cluster: Sloan Digital
Sky Survey III Baryon Oscillations
Spectroscopic Survey – 6%

The real probes for the strong field regime (v/c>0.1 orGM/c2R∼1) are:

Final stages of binary coalescence of compact objects (WD, NS, BH)

Cosmological tests of the (early) Universe

Known problems: Classical theory (not renormalizable), Singularities,
Cosmological constant problem, Vacuum fluctuations, Dark Energy, Dark
Matter, The initial inflation and initial singularity problem etc.
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Examples of what we don’t know:

The rotation curves of disc galaxies
[Corbelli & Salucci (2000)]

Weak gravitational lensing results
[Clowe et al. (2006), Huterer (2010)]

An ongoing quest:

– The Dark Energy Survey (operational),

– Sloan Digital Sky Survey III (operational,
35% of the sky, with photometric
observations of around 500 million objects
and spectra for more than 1 million
objects),

– The Euclid Mission (2020, L2 space
telescope)

– HETDEX (2014), DESI (2018),
BOSS(operational) etc.
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The compact stars in GR:

White dwarfs (WD) and neutron stars (NS) – significant observational
data and modelling efforts, but still inconsistencies:

The ultra-massive white dwarfs: SNLS-03D3bb (Nature 443 (2006)
308) and SN2007if (ApJ 713 (2010)), type Ia SN with progenitor
exceeding the MCh = 1.4M� (up to 2.4-2.8M�)

Stiff M(R) dependence for neutron stars or a dispersion in the
observed masses?

The question of the maximal NS mass and its relation to stellar black
holes and astrophysical jets

The Gamma-Ray Bursts mistery: huge energies, short characteristic
time-scales, long life of the central engine

There are numerous approaches towards solving these problems – better
MHD modeling, stronger and more complicated magnetic fields, better
and richer equation of states etc.

One can also choose to go to a deeper level and extend the very GR.
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Ways to extend GR

Requirements:

reproduce the Minkowski spacetime in the absence of matter and
cosmological constants,

be constructed from only the Riemann curvature tensor and the
metric,

follow the symmetries and conservation laws of the stress-energy
tensor of matter,

reproduce Poissons equation in the Newtonian limit.

Starting from the Einstein-Hilbert action, one can:

increase the spacetime dimensions

change the functional dependence of the Lagrangian density on the
Ricci scalar R

include other scalars generated from the Riemann curvature in the
Lagrangian density,

include additional scalar, vector, or tensor fields.
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Alternative gravity theories

Some of the more popular alternatives of GR (AE =
∫

1
2κR
√
−g d4x) :

Gaus Bonnet theory – includes a term of the form:
G = R2 − 4RµνRµν + RµνρσRµνρσ in the action A =

∫
dDx
√
−g G . ( no

additional dynamical degrees of freedom)

Lovelock theory – a natural generalization of GR to D > 4.

L =
√
−g (α0 + α1R + α2

(
R2 + RαβµνR

αβµν − 4RµνR
µν
)

+ α3O(R3))

f (R) theories – a familly of theories in which the arbitrary function f (R) may lead
to the accelerated expansion and structure formation of the Universe /dark energy
or dark matter alternative/. A =

∫
1

2κ
f (R)

√
−g d4x

Brans-Dicke scalar-tensor theory – the gravitational interaction is mediated by a
scalar field (φ = 1/G) – i .e. a varying G, as well as the tensor field of general
relativity. Contain a tunable, dimensionless Brans-Dicke coupling constant ω.

A =
∫
d4x
√
−g

(
φR−ω ∂aφ∂

aφ
φ

16π
+ LM

)
Chameleon scalar-tensor theory – Introduces a scalar particle (the chameleon)
which couples to matter, with a variable effective mass, an increasing function of
the ambient energy density meff ∼ ρα, where α ' 1. (meff ∼ mm − pc).
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Minimal Dilatonic Gravity (MDG)

The action, following Fiziev, PRD 87, 044053 (2013)

Ag ,φ =
c

2κ

∫
d4x

√
|g |(ΦR − 2ΛU(Φ))

Here, Φ ∈ (0,∞) is the new scalar field called “dilaton”, Λ > 0 is the
cosmological constant and κ = 8πGN/c

2 is the Einstein constant.

Effects

Clearly, the introduction of the scalar dilaton Φ leads to varying
gravitational constant G (Φ) = GN/Φ, while the introduction of the
cosmological potential U(Φ) leads to a variable cosmoloical factor instead
of a constant Λ.

Note: In order to keep gravity as existing and attractive force Φ > 0.
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The minimal dilatonic gravity pt2

The action

Ag ,φ =
c

2κ

∫
d4x

√
|g |(ΦR − 2ΛU(Φ))

This action corresponds to the Brans-Dicke theory with ω = 0.
GR is recovered for Φ = 1,U(1) = 1.

In general, the MDG model and the f (R) models are equivalent only locally. Only under

additional conditions, the two models can be considered globally equivalent. Those

conditions define the class of the potentials U(Φ), for which one also avoids some of the

well-known problems in the f (R) theories, like physically unacceptable singularities,

ghosts, etc. .
Some of the properties of the MDG model already demonstrated:

1 The inflation and the graceful exit to the present day accelerating de Sitter
expansion of the Universe (U(Φ) can be reconstructed from a(t)).

2 Avoids any conflicts with the existing solar system and laboratory gravitational
experiments when mΦ ∼ 10−3eV /c2.

3 The time of inflation as a reciprocal quantity to the mass of dilaton mΦ.
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The field equations of MDG

– variation of the MDG action with respect to Φ gives:

R = 2ΛU,Φ(Φ) (1)

Note: this is an algebraic relation. It ensures that Φ has the same
properties as R. (for example, R = const leads to Φ = const and
G (Φ) = const.
– variation of the MDG action with respect to gαβ gives:

ΦGαβ + ΛU(Φ)gαβ +∇α∇βΦ− gαβ�Φ = 0 (2)

– the trace of eq. 2 leads to:

�Φ + ΛV,Φ(Φ) = 0 (3)

Here V,Φ(Φ) = 2/3(ΦU,Φ(Φ)− 2U(Φ)) or V (Φ) = 2
3

∫ Φ

1
(ΦU,Φ(Φ)− 2U)dΦ

– And the traceless part:

Φ
ˆ
Rβα = −∇̂α∇βΦ (4)
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The final form of the field equations:

If we include the standard action of the matter fields Ψ, based on the
minimal interaction with gravity:

Amatt =
1

c

∫
d4x

√
|g |Lmatt(Ψ,∇Ψ; gαβ) (5)

we get the final form of the field equations in cosmological units
Λ = 1, κ = 1, c = 1:

�Φ + 2/3(ΦU,Φ(Φ)− 2U(Φ)) =
1

3
T

Φ
ˆ
Rβα = −∇̂α∇βΦ− ˆ

T β
α

(6)

Note: The dilaton Φ does not interact directly with the matter and thus it
is a good candidate for the dark matter. Its interaction with the usual
matter goes only trough the gravitational interaction.
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Properties of MDG

1 MDG and f(R) theories are related by the Legendre transform (i.e.
there is a dictionary between the two models).

2 The witholding property: In order to guarantee that Φ ∈ (0,∞), we
require that V (0) = V (∞) = +∞, i.e. infinite potential barriers at
the end of the interval.

3 From U(Φ) = 3
2 Φ2

∫ Φ
1 Φ−3V,ΦdΦ + Φ2 (from U(1) = 1), if we

assume that V (Φ) ∼ vΦn, it follows that U(0) = U(∞) = +∞.

4 Additional requirement: U(Φ) > 0, for Φ ∈ (0,∞) (the cosmological
term needs to have a definite positive sign).

5 From the convex condition U,ΦΦ > 0, for Φ ∈ (0,∞) (ensures the
uniqueness of the Einstein vacuum).

6 The uniqueness of the deSitter vacuum is not guaranteed:

V,ΦΦ =
2

3
(ΦU,ΦΦ − U,Φ),V,ΦΦΦ =

2

3
ΦU,ΦΦΦ

Thus we can have V (Φ) with several minima in the domain.
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Credit: Fiziev, Physical Review D 87, 044053 (2013)

(e) Unique Einstein Vacuum and
many deSitter vacuums: U,ΦΦ > 0

(f) Unique Einstein Vacuum and
unique deSitter vacuums:
U,ΦΦ > 0,V,ΦΦ > 0
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Examples of MDG with unique dSV

If we postulate a unique deSitter vacuum, then the function V (Φ) will be
convex for Φ ∈ (0,∞) and the function 2

3 (ΦU,ΦΦ − U,Φ) > 0 is strictly
positive.
A simple example of such pair of withholding potentials is:

V (Φ) =
1

2
p−2(Φ + 1/Φ− 2) (7)

U(Φ) = Φ2 +
3

16
p−2(Φ− 1/Φ)2 (8)

where p is a small parameter related with the dilaton mass.

We are going to use these witholding potentials in our study of compact
stars.
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Application to compact stars

We follow the first application to the case of neutron stars published in
[Fiziev (2013)]:
Let us consider a static, spherically symmetric metric of the type:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2, (9)

where r is the luminosity distance to the center of symmetry, and dΩ2

describes the space-interval on the unit sphere.
The equations are the MDG field equations:

�Φ + 2/3(ΦU,Φ(Φ)− 2U(Φ)) =
1

3
T

Φ
ˆ
Rβα = −∇̂α∇βΦ− ˆ

T β
α

(10)

Then, if we assume the perfect fluid stress-energy tensor
Tµν = diag(ε, p, p, p) /c = 1/ we obtain:
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The equations

1. For the inner domain r ∈ [0, r∗]:

dm

dr
=4πr 2εeff /Φ (11)

dp

dr
=−p + ε

r

m + 4πr 3peff /Φ

∆− 2πr 3pΦ/Φ
(12)

dΦ

dr
=−4πr 2peff /∆ (13)

dpΦ

dr
=−pΦ

r∆

(
3r−7m− 2

3
Λr 3 +4πr 3εeff /Φ

)
− 2

r
εΦ (14)

Additionally, we have:

εΛ = −pΛ −
Λ

12π
Φ,

εΦ = p − 1

3
ε+

Λ

8π
V ′(Φ) +

pΦ

2
Π

ε = ε(p)

where
∆ = r−2m− 1

3 Λr3, εeff = ε+εΦ +εΛ, peff = p+pΦ +pΛ,Π = m+4πr3peff /Φ
∆−2πr3pΦ/Φ

and
εΛ = Λ

8π (U(Φ)− Φ), pΛ = Λ
8π (U(Φ)− 1

3 Φ)

...

The 4 unknown functions are m(r), p(r),Φ(r), pΦ(r).
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The Innitial and Boundary conditions:

m(0) = mc = 0,Φ(0) = Φc , p(0) = pc

pΦ(0) = pΦc =
2

3

(
ε(p)

3
− pc

)
− Λ

12π
V ′(Φc )

On the star’s edge (p(r∗) = 0) we have

m∗ = m(r∗; pc ,Φc ),Φ∗ = Φ(r∗, pc ,Φc ), p∗Φ = pΦc(r∗, pc ,Φc )

2. For the outer domain: a boundary value problem for Φ:

p = 0, ε = 0,Φ∆ = 1

After introducing the EOS, we solve the ODE system + the initial and
boundary conditions for the unknown functions m(r), p(r),Φ(r), pΦ(r).
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The case of a TOV neutron star

If one uses the Tolman-Oppenheimer-Volkov (TOV)
model for EOS (ideal Fermi neutron gas at zero
temperature):

ε =
1

4π
K (sinh(t)− t), p =

1

12π
K (sinh(t)− 8 sinh(t/2) + 3t)

Here K = πm4c5

4h2 , t = 4log

(
pF
mc +

(
1 +

(
pF
mc

2
))1/2

)
and

p =
√

Λ~/cmΦ = 10−21 (the dilaton mass parameter, for observational
consistency, p < 10−30), Λ ∼ 10−44km−2,
EOS in the original notations of [Oppenheimer & Volkoff (1939)], see also
[Rezzola & Zanotti (2013)].
We use MAPLE to solve the ODE system using the shooting method for
the BC and the rosenbrock method for the integration.
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M = 1.4− 2M�
R = 12− 13km
ρ = 109 − 1017kg/m3

Composition: n0(...)



Fiziev, Physical Review D 87, 044053 (2013)

(g) (h)

(i) (j)
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The TOV equations for White Dwarfs

In the case of GR, the white dwarfs are described
well even in the polytropic approximation:

Here the integration has been performed using Maple. /M(r) is in M�, r in [km]/
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MWD = 0.17− 1.3M�
RWD = 0.008− 0.02R�
ρWD = 105− 109gr/cm3

Composition:
He,C ,O
The ODE system:

dM(r)

dr
= βr2ε

dp(r)

dr
=
αεM(r)

r2

ε = (p(r)/K )1/ν



The WD case in MDG (for A/Z = 2.15)

In the case of white dwarfs, we use the polytropic EOS in the two regimes
– the relativistic case (kF >> me) and the non-relativistic case kF << me :

pnonrel = Knonrelε
5
3 , prel = Krelε

4
3 ,

where

Knonrel =
~2

15π2me

(
3π2Z

AmNc2

)5/3

,Krel =
~c

12π2

(
3π2Z

AmNc2

) 4
3

We make the equation dimensional following [Sibar and Reddy (2004)].

Model rMDG mMDG rGR mGR

Relativistic WD (p0 = 10−14) 4 947 1.2406 4840 1.2431
Relativistic WD (p0 = 10−15) 8 799 1.2419 8600 1.2432
Relativistic WD (p0 = 10−16) 15 648 1.2427 15 080 1.2430
Non-Relativistic (p0 = 10−15) 10 603 0.3929 10 620 0.3941
Non-Relativistic (p0 = 10−16) 13 349 0.1969 13 360 0.1974
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The WD case ( M in solar masses, r in km, p in ergs/cm3 ∗ 1038 )

(l) Non-relativistic case (m) Relativistic case

(n) Non-relativistic case (o) Relativistic case

(p) Non-relativistic case (q) Relativistic case
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The two dimensionless pressures and some FORTRAN
Rosenbrock fun
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Summary of the results

1 The MDG equations recover GR to a good
precision (Φ = 1,U(1) = 1,Λ = 0)

2 For a massive dilaton, the M(R) curves are
consistent with GR

3 In the NS case, the total mass of the
dilasphere is 30% of that of the NS

4 In the case of polytropic WD, the mass of
the dilasphere is ∼ 27% of that of the star

5 The WD radius and the mass increase with
the introduction of the dilaton

6 The current value of the dilaton mass with
which we are working (d ∼ 10−20) is well
above the one required by observations
∼ 10−30.

The results for the cases of those simplistic EOS-es are promising, but
we need new tools to solve for really light dilaton!
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The COCAL implementation, with Antonios Tsokaros, ITP

As part of this COST visit at the ITP, the MDG static equations were implemented in
the Compact Object CALculator (Tsokaros et al. in prep (2014)).

Some preliminary results for the NS case /here γ = 2/:
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The TOV solver is stable up to 150 NS radii!
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The desired course of action:

1 To use more realistic EOS for both the
WD case and the NS case (for example
using the online database cococubed)

2 To get nearer to the cosmological horizon.

3 To use the TOV solver in Cocal (with
Antonios Tsokaros)

4 A 3 + 1 formulation of the field equations

5 To use the cocal implementation for
rotating neutron stars

6 Why not even for binary systems

The final goal is to see if we can obtain more massive compact stars
in MDG without complex EOS or at least, if we can get out of the
shadow of the stiff M(R).
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That’s all!

Thank you
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The GRB mistery

1 Energy ∼ 1053erg , two types – Short and Long

2 Different variability time-scales – ms, sec, hundreds of seconds

3 X-ray plateaus – continued injection of energy (∼ 100s)

4 X-ray flares – multiple rebrightening, happening at up to 105s

5 Ultralong GRBs (GRB 091024A, GRB 111209A ) – GRBs with γ-emission lasting
more than 1000s (APJ, 778:54, 2013, ApJ 766:30, 2013)

6 Extended high energy emission (GeV scale, example GRB130427A)

7 All those properties call for a long-lasting, extremely powerful central engine

8 Figure credit: Gehrels et. al (2009), Gendre et al. (2012), ApJ 766, 30, 2013(GRB
111209A)

Multiple proposed models, but yet not clear understanding of the critical
processs during a GRB.
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