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Geometry and Action Principle

Fundamental �eld theories allow a description
through an action principle:

I [g µν ] =
1

16π

∫
M

(R−2Λ)
√
−gd4x

δ I=0⇒ Rµν −
1

2
Rgµν + Λgµν = 0

Lorentzian spacetime manifold M .

Curvature and causal structure described by gµν .
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Spacetime to Space and Time

Solutions for the gµν heavily rely on symmetries
imposed on spacetime M .

Numerically integrate more general solutions?

General Relativity based on the union of space and time.
Time evolution scheme?

Standard way: Split Einstein �eld equations into spatial and
temporal partial di�erential equations.

Non-linear coupled PDEs, very di�cult to solve.
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Principle of Equivalence

�The laws of physics are the same in any local Lorentz frame
of curved spacetime as in a global Lorentz frame of �at
spacetime.� (Gravitation, Misner, Thorne and Wheeler)

In a local region around an event spacetime looks like
Minkowski space.

Cut the universe in �at pieces and glue them together?
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Regge Calculus

Tullio Regge (1961):

Approximate the local neighborhood
by �nite sized blocks.
Interior of the blocks: �at Minkowski spacetime.
Fundamental degrees of freedom: edge lengths.

Piecewise linear spacetime manifold.

Triangulation based on 4-simplexes.
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n-Simplexes

0, 1, 2 and 3-dimensional simplex.
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5-Cell

5-cell, 4-simplex or pentachoron
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Hinges and Angles

0, 1 and 2 dimensional hinges: vertex, edge and triangle.
(Galassi 1992)
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Defect Angle on PL 2-Sphere
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Curvature and Gravitation

Everything known to de�ne discrete Hilbert-Action (without
cosmological constant):

IH =
1

16π

∫
M
R
√
−gd4x

⇒IRegge =
1

16π
∑
σ2

Rσ2Vσ2

=
1

8π
∑
σ2

εσ2Aσ2

T. Regge (1961): �General Relativity without Coordinates.�
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Vacuum Regge Equations

Einstein �eld equations follow from variation of IH w.r.t. gµν .

Regge equations follow from variation w.r.t. l2j

Rj :=
δ IRegge

δ l2j
= ∑

σ2⊃σ
j
1

δAσ2

δ l2j
εσ2 = 0

Non-linear algebraic equations relating the edge lengths of the
triangulation.
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Time Evolution in Regge Calculus

Sorkin (1975) and Tuckey (1993):

Time evolution of a hypersurface by a local decoupling scheme.

Advance vertex after vertex to the next hypersurface.

Triangulating the intermediate region
automatically by 4-simplexes.
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Sorkin Scheme

Successive steps in the Sorkin scheme. (Gentle 1999)
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Sorkin Scheme

Pairs of known and unknown edges.
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Sorkin Scheme

Sorkin scheme in one, two and three dimensions. (Galassi 1992)
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The Standard Frame

l2ij = gµν ∆x
µ

ij ∆xvij ⇒ gµν = 1

2

(
l2
0µ

+ l2
0ν
− l2µν

)
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Structure of the Equations

De�ne n-volume to be positive de�nite

Vn =
1

n!

√
|g (n)| ⇒ A

(
l2
)
⇒ ∂A

∂ l2j

Construct normal vectors to two successive tetrahedrons

nµ ,mµ ⇒ φnm⇒ εσ2

Notion of angle depends on triangle signature:

Euclidean angles around timelike triangles.
Hyperbolic angles around spacelike triangles.
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Overview

Written in C++:

Split into highly �exible classes:
triangulation, equations, time evolution
Allowing for arbitrary simplex weigths and additional terms.
Parallelized time evolution based on vertex coloring.

Will be released as OSS under the MPL2.
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Check and Initialisation

Freely speci�able input data:

Hypersurface triangulation Σ of a closed PL 3-manifold.
Initial edge lengths.
Arbitrary additional terms.

Check input hypersurface: PL closed 3-manifold?

Generate 4-dim three-surface triangulation by Sorkin scheme.
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Initial Conditions

Three-surface triangulation and initial conditions. (Peuker 2009)
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Kasner Metric

Kasner metric, solution of vacuum Einstein �eld equations

ds2 =−dt2 + t2pxdx + t2pydy + t2pzdz

With the conditions

px +py +pz = 1

p2x +p2y +p2z = 1

Homogeneous hypersurfaces,
but anisotropic expansion/contraction
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Regular Lattice

Regular lattice with vertex types A, B, C and D which can be
evolved in parallel. (Gentle 1999)
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Initial Conditions

Triangulated domain: Σ0→ Σ1→ Σ2

Initial edge lengths from analytical solution

l2 =

(∫
γ

√
gµν (λ )dxµdxν

)2

Approximate by straight line xµ (λ ) = x
µ

0
+ λ ∆xµ

l2 =

(∫
1

0

√
gµν (λ )∆xµ ∆xνdλ

)2

Start at a cosmic time of t0 = 1.
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Time Evolution

px ,y = 2

3
, pz =−1

3
, ∆x = 0.005, 10000 iterations
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Time Evolution

px ,y = 0, pz = 1, ∆x = 0.005, 222 iterations

Ludwig Jens Papenfort Cosmology on Simplicial Complexes



Gravitation and Regge Calculus
The Reggecalc Library

Numerical Results
Conclusion

Kasner spacetime
Λ-vacuum spacetime

Time Evolution

px ,y = 0, pz = 1, ∆x = 0.005, 222 iterations

Ludwig Jens Papenfort Cosmology on Simplicial Complexes



Gravitation and Regge Calculus
The Reggecalc Library

Numerical Results
Conclusion

Kasner spacetime
Λ-vacuum spacetime

Time Evolution

px ,y = 0, pz = 1, ∆x = 0.005, 222 iterations

Ludwig Jens Papenfort Cosmology on Simplicial Complexes



Gravitation and Regge Calculus
The Reggecalc Library

Numerical Results
Conclusion

Kasner spacetime
Λ-vacuum spacetime

Outline

1 Gravitation and Regge Calculus
Foundations of General Relativity
Geometric Structure of Regge Calculus
Time Evolution in Regge Calculus

2 The Reggecalc Library
Calculating the Regge Equations
Basic Concepts

3 Numerical Results
Kasner spacetime
Λ-vacuum spacetime

Ludwig Jens Papenfort Cosmology on Simplicial Complexes



Gravitation and Regge Calculus
The Reggecalc Library

Numerical Results
Conclusion

Kasner spacetime
Λ-vacuum spacetime

Inclusion of Λ

Start again from Hilbert action

SH =
1

2κ

∫
R dV (4)− 1

κ

∫
ΛdV (4)

Discretize action associated with Λ

SΛ =−Λ

κ

∫
dV (4)→−Λ

κ
∑
σ4

Vσ4 =−Λ

κ
∑
σ4

√
|gσ4 |
4!
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Inclusion of Λ

Regge equations with cosmological constant

δSRΛ

δ l2j
=

δSR

δ l2j
+

δSΛ

δ l2j
:= Rj +RΛ,j

!
= 0.

RΛ,j =− 1

κ

Λ

4! ∑
σ4⊃σ

j
1

δ
√
|g |

δ l2j

=− 1

κ

Λ

2 ∑
σ4⊃σ

j
1

Vσ4tr

(
g−1 · δg

δ l2j

)
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Λ-vacuum Metric

Flat Λ-vacuum → �at FLRW metric

ds2 =−dt2 +a2 (t)
(
dx2 +dy2 +dz2

)
Governed by (�rst) Friedman equation

H2 =

(
ȧ

a

)2

=
Λ

3
= const.

⇒ a (t) ∝ e
√

Λ
3 t

Homogeneous �at hypersurfaces,
exponentially expanding.
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Kasner spacetime
Λ-vacuum spacetime

Time Evolution

Λ = 1,∆x = 0.005, 1000 iterations
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Kasner spacetime
Λ-vacuum spacetime

Time Evolution

Λ ∈ {1,2,3,4},∆x = 0.005
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Conclusion

Conclusion

Regge calculus is a useful method to
approximate General Relativity.

Time evolution produces a triangulation of the spacetime.
→ fundamentally geometric, no coordinates.
Original method developed to couple Λ to the lattice.
→ produces the correct time evolution.
Next step: coupling of perfect �uid.
→ inhomogenous/anisotropic universes.

Reggecalc library good starting point for further investigations.

Thorough stability-analysis of the involved equations needed.
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Appendix Further Details

Cauchy Surfaces

Cauchy surface Σ and its normal n foliating the manifold.
(Gourgoulhon 2007)
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Appendix Further Details

3+1 Einstein equations

Second-order non-linear PDEs (vacuum, Λ = 0):

(
∂

∂ t
−Lβ

)
γij =−2NKij

(
∂

∂ t
−Lβ

)
Kij = N

{
Rij +KKij −2KikK

k
j

}
−DiDjN

R +K 2−KijK
ij = 0

DjK
j
i −DiK = 0
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Appendix Further Details

Piecewise Linear Manifold

Gravitational degrees of freedom completely
described by edge lengths li .

{li}⇐⇒ gµν (x)⇐⇒ eaµ (x)

Only n-simplexes are fully described by their li .

n (n+1)

2
gµν ⇔

n (n+1)

2
li

Leads to a triangulation of spacetime by 4-simplexes.
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Appendix Further Details

Rigidity of Polygons

Rigidity of polygons. (Miller 2008)
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Topology

Orientable, locally Euclidean topological 3-spaces. (Lachieze-Rey
and Luminet 1995)
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Appendix Further Details

Lapse and Shift

Lapse N and Shift β giving the coordinate propagation between
two Cauchy surfaces. (Gourgoulhon 2007)

Ludwig Jens Papenfort Cosmology on Simplicial Complexes



Appendix Further Details

Star of a Vertex

Star of a vertex in two dimensions. (Wikimedia.org)
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Appendix Further Details

Sorkin Scheme

Two-surface initial condition and Regge equations. (Gentle 1999)
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Time Step and Causality
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Appendix Further Details

Lapse and Shift

Lapse and shift in Regge calculus. (Peuker 2009)
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Appendix Further Details

Sorkin Scheme in Two Dimensions

Sorkin scheme in two dimensions on a simplicial complex. (Galassi
1992)
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Appendix Further Details

Time Evolution

Solve Regge equations (and additional terms) by
Newton-Raphson method:

Jj
k
(
l2
)

∆l2k =−Rj

(
l2
)

Jacobian Jj
k is determined by numerical di�erentiation.

Overdetermined system solved using a QR decomposition.
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Appendix Further Details

Shift Conditions

Figure : Regular lattice with vertex types A, B, C and D which can be
evolved in parallel. (Gentle 1999)
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Link of a Vertex
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Appendix Further Details

Hyperbolic Boost Angles

Hyperbolic boost angles between vectors in Minkowski plane
de�ned on unit hyperboles. (Gentle 1999)
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Appendix Further Details

Historical applications

Vacuum Regge equations �rst used to calculate
static vacuum spacetimes

Schwarzschild geometry (Wong 1971)
Black holes with non-spherical and multiple throats
(Collins and Williams 1972)

Later on time evolution of highly symmetric spacetimes

RW and Tolman universes (Collins & Williams 1973/74)
Relativistic collapse of a spherically symmetric perfect �uid
(Dubal 1989b/90)
Taub universe initial value problem and time evolution
(Tuckey and Williams 1988)
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Appendix Further Details

600-Cell closed FLRW Model

600-cell: Triangulation of S3.

600 tetrahedrons, 120 vertices,
12 edges meeting at every vertex.
Forwarded in time by 4 steps with 30 vertexes
evolved in parallel.

Action for an isolated particle of mass m:

I =−
∫
mds

Action of homogeneously distributed dust (�particles�)
on vertices:

I = ∑
h

Ahεh−8π ∑
i

M

120
∆τi
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Appendix Further Details

Scale Reduction

Figure : Regge approximation to closed FLRW universe through
subdivisions. (Brewin 1987)
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Appendix Further Details

Curvature in a Simplicial Complex

Curvature introduced by angle defects εh on
n−2 dimensional hinges.

n = 2: Surface tiled by triangles, εh at vertexes (angle).
n = 3: Volume tiled by tetrahedrons, εh at edges
(dihedral angle).
n = 4: Spacetime tiled by pentachorons, εh at triangles
(hyperdihedral angle).
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Appendix Further Details

Curvature by Di�erential Geometry

Curvature �detection�:

Parallel transport a unit vector u around a closed loop
with enclosed area A.

(n)
R = n (n−1) (n)

K = n (n−1)
δu

A

Simplicial complex with angle defect εh:

Parallel transport of vector around a closed loop orthogonal to
the hinge h.
Vector comes back rotated by εh = 2π−∑i θi

Independent of enclosed area A (conical singularity).
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Appendix Further Details

Curvature by Di�erential Geometry

Natural choice of area where curvature is supported
(Miller 1997):

Circumcentric dual polygon h∗ (Voronoi cell).

(n)
Rh = n (n−1) (n)

Kh = n (n−1)
εh

Ah∗

De�nes a hybrid-cell, which tiles spacetime and retains rigidity.

V
hybrid
h =

2

n (n−1)
AhAh∗
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Appendix Further Details

Bianchi Identities

Cartan formalism also delivers ordinary Bianchi Identity:

∑
h⊃L

R̂h = 0 ⇔ Rα

β [λ µ;ν]

In continuum contracted Bianchi Identity:

Rα

β [λ µ;ν]⇒
(
Rµν − 1

2
g µνR

)
;µ

= 0

Gives conservation of source ∇µT
µν = 0

and di�eomorphism invariance.
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Appendix Further Details

Contracted Bianchi Identity

Cartan formalism and BBP deliver
approximate Bianchi Identity

∑
L⊃V

∑
h⊃L

1

2
Lcot(θh)εh +O

(
L5
)

= 0

Approximate di�eomorphism invariance.

Free choice of Lapse N and Shift β i through evolution
with error ∝ O

(
L5
)
.

Corresponds to one timelike edge
and three diagonals between surfaces Σt .
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Appendix Further Details

Geodesic Deviation on Simplex

Figure : Geodesic deviation on a simplex with angle defect. (Miller 1998)
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Appendix Further Details

Geodesic Deviation in Simplicial Complex

Figure : Geodesic deviation in a simplicial complex. (Miller 1998)
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Appendix Further Details

Initial Conditions

Constraint equation to be ful�lled by initial conditions.

Di�erent approaches to split between constrained
and free initial data.

e.g. Lichnerowicz (1944) and York (1971):
Conformal decomposition of three metric.

γ = Ψ4
γ̃

Further split extrinsic curvature Kij into traverse
and traceless parts.
Gentle (1998):
York-type initial data formalism for (source-free) Regge
Calculus.
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Appendix Further Details

Moment of Time-Symmetry

Spacetimes with a moment of time-symmetry:

Kij = 0 ⇒ R = 0⇒ εh = 0

e.g. closed FLRW-metric.

Choose triangulation, e.g. regular 600-cell
(homogeneous and isotropic).
Generate two slice initial conditions Σt0 , Σt0+dt

from Regge equations at time-symmetry.
Forward Σt0+dt in time to get time evolution of closed FLRW.

S
3×R
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Appendix Further Details

Discrete Exterior (Co-)Derivative

Exterior derivative d :
k-form ω

d→ (k +1)-form η = dω

Exterior co-derivative δ

k-form ω
δ→ (k−1)-form ζ = δω

Stokes theorem ∫
σk

dω =
∫

∂σk
ω

De�ne discrete exterior (co-)derivative:〈
dω,σk

〉
=

1

|σk |

〈
ω,δσ

k
〉

de Rham cohomology also de�ned for the dual lattice
(Hodge dual ?).
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Appendix Further Details

Discrete Scalar Fields

Action of a scalar �eld:

IS
[
φ , φ̄

]
=
∫

1

2

(
∂

µ
φ∂µ φ̄ −m2

φ̄φ
)
d4x =

1

2

(
dφ ,d φ̄

)
−m2

2

(
φ , φ̄

)
(ω,η) :=

∫
ω ∧?η →∑

σk

〈ω,η〉V n
σk

Projecting the 0- and 1-forms on the lattice gives

〈φ ,v〉= φ (v)

〈dφ ,L〉= ∑
v⊂L

1

|L|
〈φ ,v〉=

φ (v +L)−φ (v)

|L|
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Appendix Further Details

Regge and Scalar Action

IS
[
φ , φ̄

]
=∑

L

1

2

φ (v +L)−φ (v)

|L|
φ̄ (v +L)− φ̄ (v)

|L|
1

4
|L|VL∗

− m2

2 ∑
v

φ (v) φ̄ (v)Vv∗

Minimal coupling to Regge action IR and thus Gravitation

I = IR + IS
δ I=0⇒ δ IR

δL
+

δ IS

δL
= 0

One system of equations per edge L.
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