Quantum Gravity improved black holes

Sven Köppel koeppel@fias.uni-frankfurt.de



Astro Coffee • 27. Jan 2015, 14:00-15:00 • FIAS 0.101

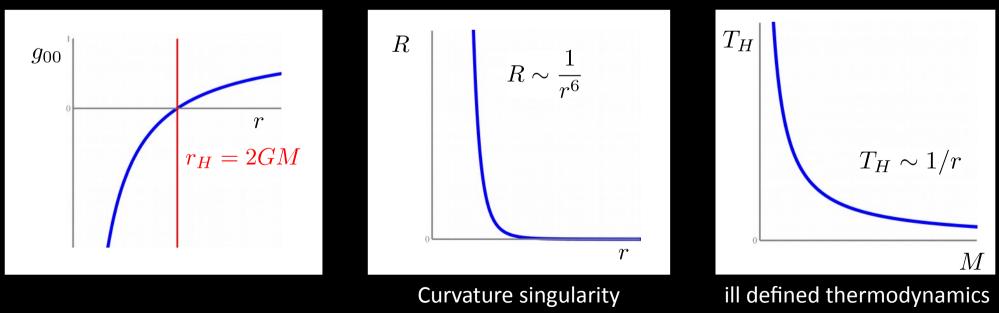
FIAS Frankfurt Institute for Advanced Studies

- 1. Quantum effects at the BH core Schwarzschild singularity Particle compression
- 2. Minimal resolution approach: GUP Gravity as nonlocal field theory Geometry and properties of the GUP BH Features

3. What's next

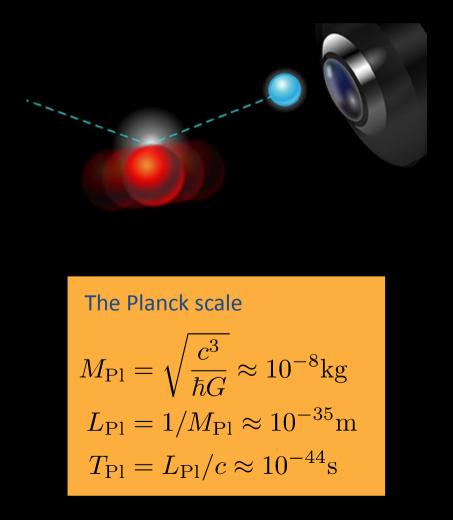
Large extradimensional scenario Other BH core models Experimental evidence The Schwarzschild black hole is not suitable to describe "smallest distances":

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \frac{1}{1 - \frac{2GM}{r}}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

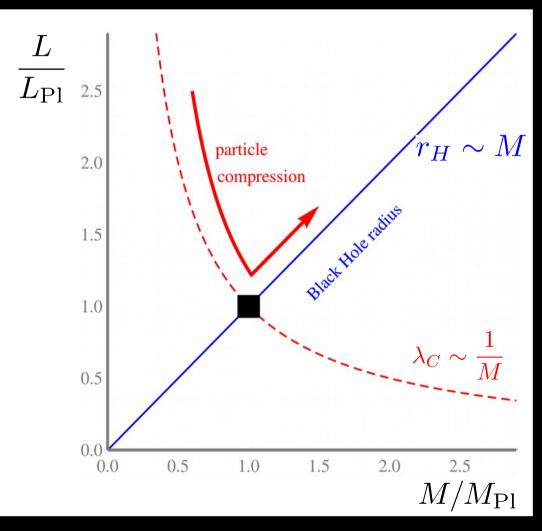


There is a widespread belief in a minimal spatial resolution in nature: Planck scale

Example Gedankenexperiments: Heisenberg Microscope



Shrinking a volume of matter:

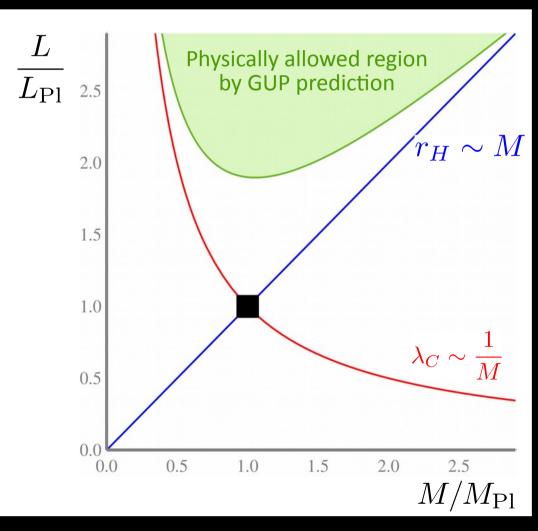


There is a widespread belief in a minimal spatial resolution in nature: Planck scale

Generalized Uncertainty Principle (GUP)

$$\Delta x \Delta p \ge \frac{\hbar}{2} \left(1 + \beta p^2 \right)$$

Shrinking a volume of matter:

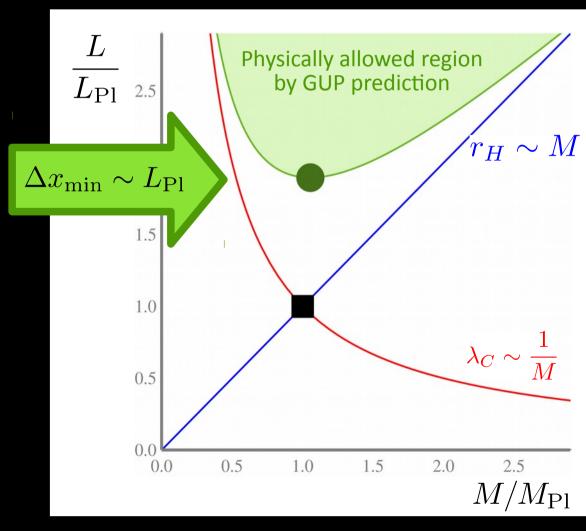


There is a widespread belief in a minimal spatial resolution in nature: Planck scale

Generalized Uncertainty Principle (GUP)

$$\Delta x \Delta p \ge \frac{\hbar}{2} \left(1 + \beta p^2 \right)$$

Shrinking a volume of matter:



There is a widespread belief in a minimal spatial resolution in nature: Planck scale

Generalized Uncertainty Principle (GUP)

$$\Delta x \Delta p \ge \frac{\hbar}{2} (1 + \beta p^2) \qquad \Rightarrow \qquad [\hat{x}^i, \hat{p}_j] = i\hbar \delta^i_j (1 + \beta \ \hat{\vec{p}}^2)$$

ightarrow maximal localized momentum states and

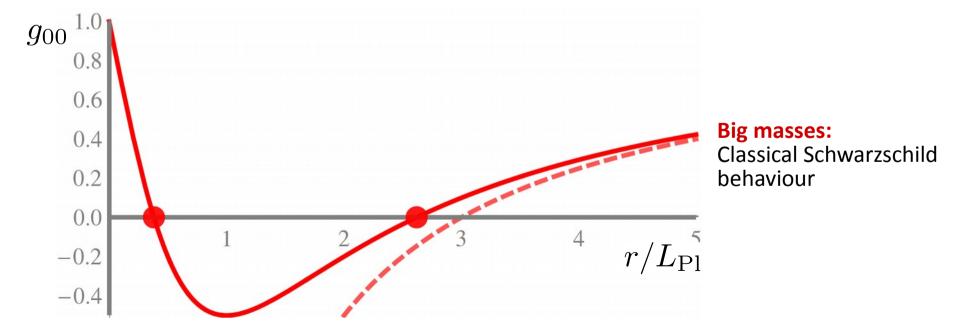
$$1 = \int_{-\infty}^{\infty} \frac{\mathrm{d}^3 p}{1 + \beta \vec{p}^2} |p\rangle \langle p|$$

 \rightarrow gives us a momentum space cutoff. Use Cutoff to determine sharpest possible object in GUP:

$$\mathcal{T}_0^0 \sim M \int_{-\infty}^{\infty} \frac{\mathrm{d}^3 p}{1 + \beta \vec{p}^2} e^{i \vec{p} \cdot \vec{r}}$$

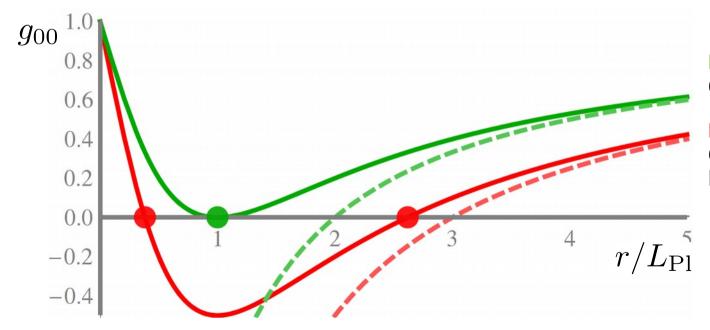
$$\mathcal{T}_0^0 \sim M \mathcal{A}^{-2}(\Box) \delta(\vec{r}) \sim \frac{M}{\beta} \frac{e^{-r/\sqrt{\beta}}}{4\pi r}$$

$$\mathrm{d}s^2 = -\left(1 - \frac{2GM}{r}\gamma(2; r/\sqrt{\beta})\right)\mathrm{d}t^2 + \left(1 - \frac{2GM}{r}\gamma(2; r/\sqrt{\beta})\right)^{-1}\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2$$



$$\mathcal{T}_0^0 \sim M \mathcal{A}^{-2}(\Box) \delta(\vec{r}) \sim \frac{M}{\beta} \frac{e^{-r/\sqrt{\beta}}}{4\pi r}$$

$$\mathrm{d}s^2 = -\left(1 - \frac{2GM}{r}\gamma(2; r/\sqrt{\beta})\right)\mathrm{d}t^2 + \left(1 - \frac{2GM}{r}\gamma(2; r/\sqrt{\beta})\right)^{-1}\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2$$

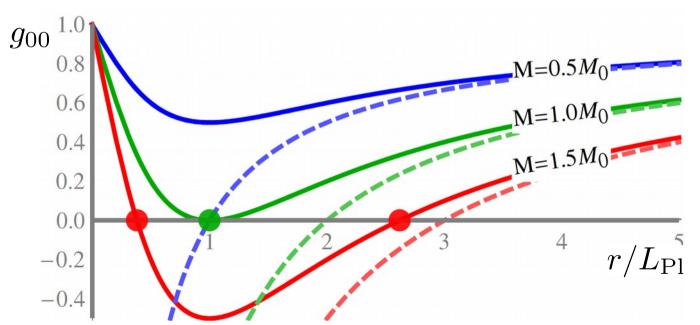


Extremal mass: One degenerate horizon

Big masses: Classical Schwarzschild behaviour

$$\mathcal{T}_0^0 \sim M \mathcal{A}^{-2}(\Box) \delta(\vec{r}) \sim \frac{M}{\beta} \frac{e^{-r/\sqrt{\beta}}}{4\pi r}$$

$$\mathrm{d}s^2 = -\left(1 - \frac{2GM}{r}\gamma(2; r/\sqrt{\beta})\right)\mathrm{d}t^2 + \left(1 - \frac{2GM}{r}\gamma(2; r/\sqrt{\beta})\right)^{-1}\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2$$



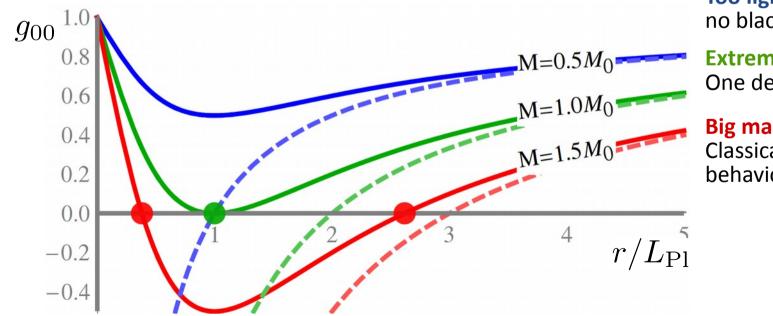
Too light mass: no black hole (*G-Lump*)

Extremal mass: One degenerate horizon

Big masses: Classical Schwarzschild behaviour

Features:

- Schwarzschild at large distances
- String theory motivated modification at Planck scale •
- Still left: Curvature singularity at origin



Too light mass: no black hole (*G-Lump*)

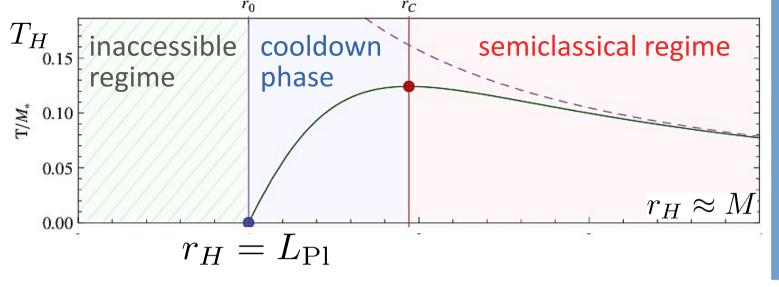
Extremal mass: One degenerate horizon

Big masses:

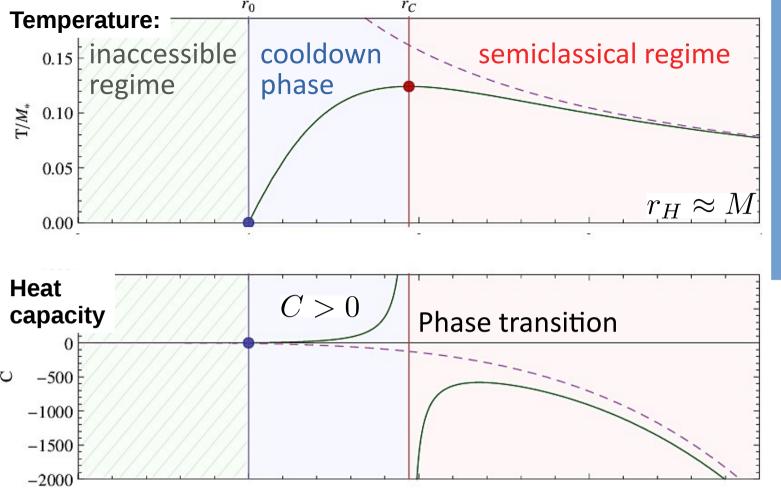
Classical Schwarzschild behaviour

Further features:

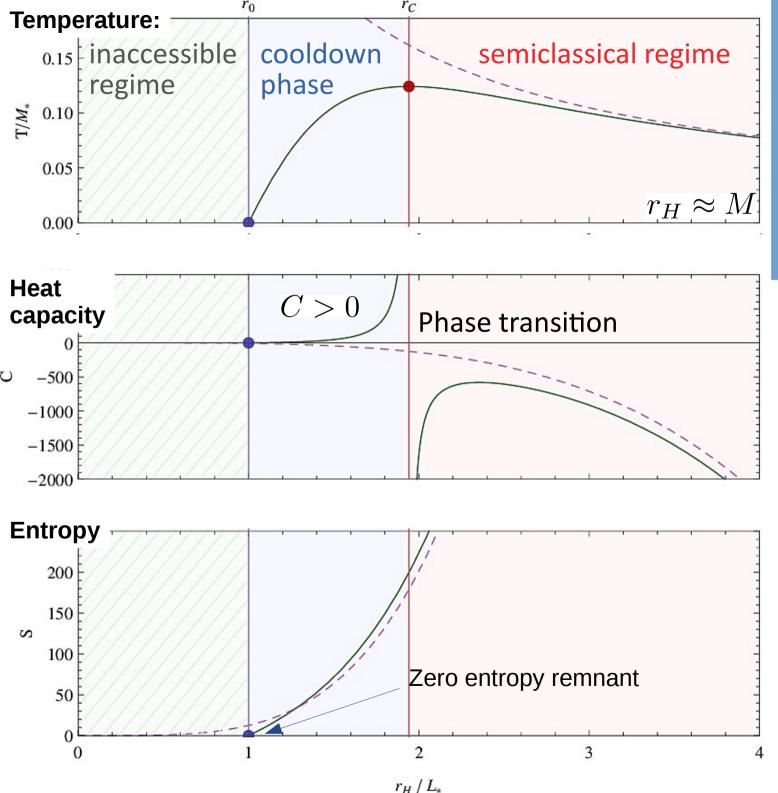
- Regular thermodynamics
- The existance of a remnant
- Self-completeness of gravity



The black hole remnant: thermodynamics



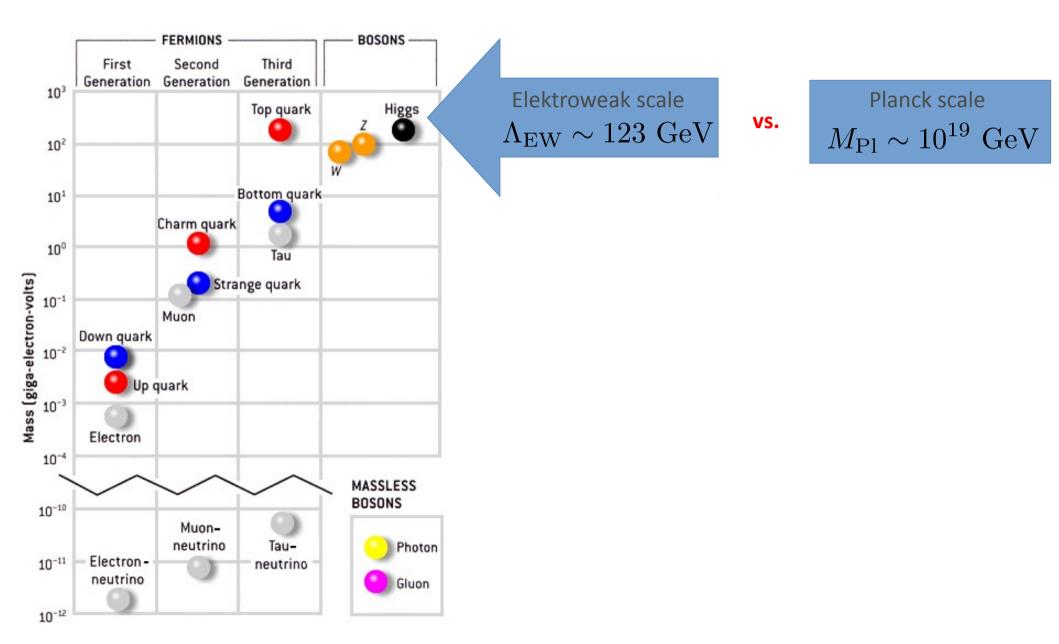
The black hole remnant: thermodynamics



The black hole remnant: thermodynamics

The remnant: A cold stable evaporation endpoint An ongoing project: Extending GUP black holes to extra dimensions.

The weak hierarchy problem of the Standard Model



ADD scenario

Dimopoulos Dvali 1998

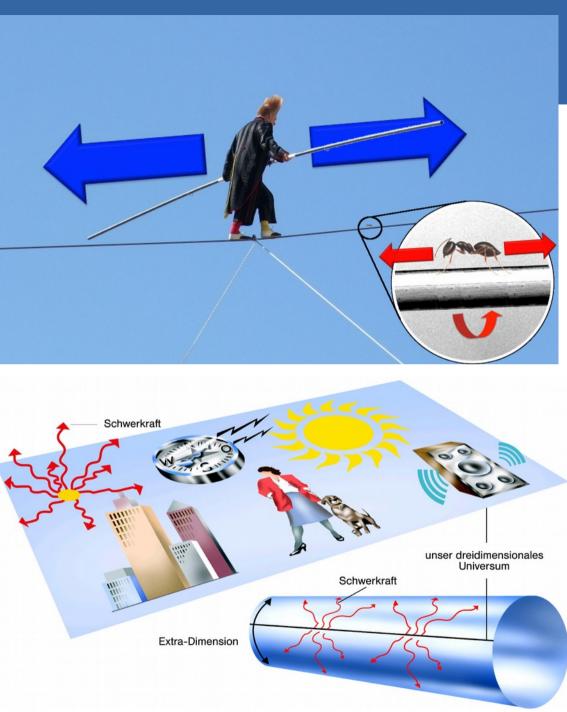
Arkani-Hamed

 $M_{\rm Pl}^2 = V_n M_*^{n+2}$

Integrated huge Volume of extra dimensions

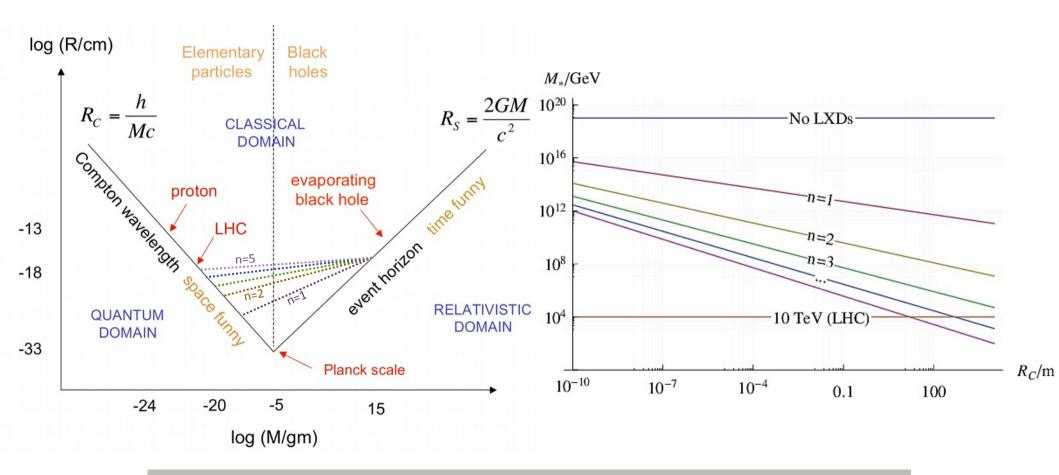
$$V_n = (2\pi R_c)^n$$

Large $\cong \mu m$ up to mm



Large Extra Dimensions

 $M_{\rm Pl}^2 \sim R_c^{\ n} M_*^{n+2}$



Maybe modify GUP for LXDs ongoing work

$$\mathcal{T}_0^0 \sim M \int_{-\infty}^{\infty} \frac{\mathrm{d}^{3+n} p}{1+\beta \vec{p}^{2+n}} e^{i\vec{p}\cdot\vec{r}}$$

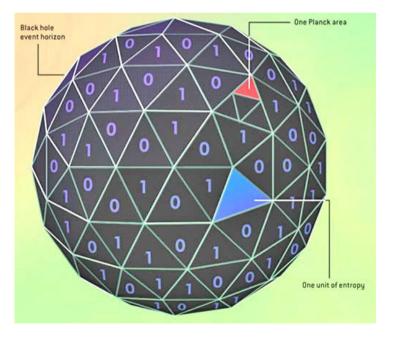
Outlook: Different metrics

The holographic metric:

- Regular center? No
- Classical low-energy limit? Yes
- Self-encoding? Yes
- Holographic picture holds? Yes

The self-regular metric:

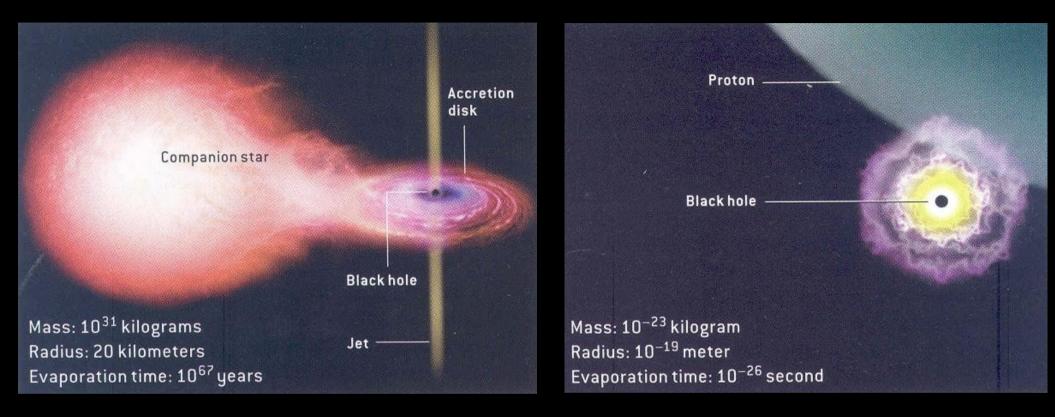
- Regular center? Yes
- Classical low-energy limit? Yes
- Self-encoding? Yes
- Holographic picture holds? No



Regular De Sitter core: Quantum outward pressure 1.00.5 800 0.0 **DeSitter** Schwarzschild -0.5-1.00.5 1.0 1.5 2.0 2.5 0.0

 r/r_0

Conclusion



Macroscopic

Literature

Nicolini, Spallucci Holographic screens in UV self-complete QR [arXiv:1210.0015]
Ongoing: Isi, Knipfer, Köppel, Mureika, Nicolini Self-Completeness and the GUP in extradimensions
Ongoing: Bleicher, Dirkes, Frassino, Knipfer, Köppel, Nicolini GUP and BHs – a paedagogical review

Microscopic

Picture Credits

Bernhard Carr [KSM 2012] Bekenstein, Kamajian [Scientific American 2005] SM particle chart: Phys. Today 65, 9, 12 (2012)