#### Strong-Field Scattering of Two Black Holes: Numerics Versus Analytics

Federico Guercilena 13/05/2014

### Binary BHs on hyperbolic orbits



# **Deflection angle**



#### Effective One Body model

- from 2-body to 1-body problem
- Geodesic motion in Schwarzschild-like spacetime

$$ds^{2} = -A(r)dt^{2} + B(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
  
$$u = 1/r \qquad A(u)_{3PN} = 1 - 2u + 2vu^{3} + a_{4}vu^{4}$$

• Resummation as Padè approximant:

$$A(u) = \frac{a_0 + a_1 u^1 + a_2 u^2 + \dots + a_n u^n}{1 + b_1 u^1 + b_2 u^2 + \dots + b_m u^m}$$

# "Padèing"



$$A(u) = \frac{1 + n_1 u}{1 + d_1 u^1 + d_2 u^2 + d_3 u^3}$$

## Effective One Body model

- A Hamiltonian of the system (describes conservative dynamics)
- Radiation reaction force terms to be added to the equation of motion
- A description of the asymptotic gravitational waveforms

#### **Effective One Body Hamiltonian**

$$H_{EOB}(r, p_{\phi}, p_{r}) = M \sqrt{1 + 2v(H_{eff}/\mu - 1)}$$

$$H_{eff} = \mu \sqrt{A(r)(1+J^2u^22\nu(4-3\nu)u^2p_r^4)} + p_r^2$$
$$p_r = p_r \sqrt{\frac{A}{B}}$$

# EOB deflection angle

$$\frac{\chi}{2} = \int_{0}^{u_{max}(E,J)} U(u,J,H_{eff}) du - \frac{\pi}{2}$$
$$U(u,J,H_{eff}) = J \frac{\sqrt{A(u)B(b)}}{\sqrt{H_{eff}^2 - A(u)(1+J^2u^2)}}$$

#### **Radiation reaction terms**

 $\frac{\partial x^{i}}{\partial t} = \frac{\partial H}{\partial p_{i}}$ 

 $\frac{\partial p^l}{\partial t} = \frac{-\partial H}{\partial x_i} + F_i$ 

#### Radiation reaction in the deflection angle

• When neglecting terms qudratic in  $F_i$  (of order (v/c)<sup>10</sup>) :

$$\begin{split} \chi^{(non-conservative)} = \chi^{(conservative)} (\overline{E}, \overline{J}) \\ E = \frac{1}{2} (E_{incoming} + E_{outgoing}) \qquad J = \frac{1}{2} (J_{incoming} + J_{outgoing}) \end{split}$$

# **Initial data**



- Equal mass BHs (m=0.5 M)
- Non spinning
- Equal anti-parallel initial momenta (|p|=0.12 M)
- Initial separation: 100 M
- Varying impact parameter b
- TwoPunctures code (spectral method)

#### Initial data: possible configurations



#### Initial energy and angular momentum

| b    | E/M       | J/M <sup>2</sup> |
|------|-----------|------------------|
| 9.6  | 1.0225555 | 1.099652         |
| 9.8  | 1.0225722 | 1.122598         |
| 10.0 | 1.0225791 | 1.145523         |
| 10.6 | 1.0225870 | 1.214273         |
| 11.0 | 1.0225884 | 1.260098         |
| 12.0 | 1.0255907 | 1.374658         |
| 13.0 | 1.0225924 | 1.489217         |
| 14.0 | 1.0225931 | 1.603774         |
| 15.0 | 1.0225938 | 1.718331         |
| 16.0 | 1.0225932 | 1.832883         |

# **Evolution**

- BSSN formulation of Einstein equations
- Spatial derivatives: 8th-order finite-difference (McLachlan code)
- 7 box-in-box mesh refinement levels for each BH
- Cartesian grid (no multipatch)
- Time evolution: Method of lines 4th-order Runge-Kutta time integrator

# Radiated energy and angular momentum



- Weyl scalar psi4
- Multipole decomposition up to I=8
- 4 extraction radii
- Extrapolation to null infinity
- Error sources: finite resolution, extrapolation, junk radiation

# **Deflection angle**



- Polynomial fit of theta as function of 1/r
- Extrapolation to 1/r=0
- Choice of degree of the polynomial

## Singular value decomposition

- Linear least squares problem: A x = b
- SVD decomposition: A = M W V<sup>T</sup>
- W = diag{w<sub>1</sub>,w<sub>2</sub>,..,w<sub>i</sub>} and x depends linearly on the reciprocals 1/w<sub>i</sub>
- Treshold T: if  $w_n < T^*max(w_i)$ , then  $1/w_n = 0$
- Coefficients and the extrapolant do not vary for polynomials of degree n>N

## Results

| b    | chi <sub>nr</sub> | chi <sub>5PN</sub> EOB | chi <sub>4PN</sub> EOB | chi <sub>3PN</sub> EOB | chi <sub>2PN</sub> EOB | chi <sup>EOB</sup> | chi <sub>3PN</sub> PN | chi <sub>2PN</sub> PN | chi PN  |
|------|-------------------|------------------------|------------------------|------------------------|------------------------|--------------------|-----------------------|-----------------------|---------|
| 9.6  | 305.8(2.<br>6)    | 322(62)                | 364.29                 |                        |                        |                    | 139.9                 | 124.2                 |         |
| 9.8  | 253.0(1.<br>4)    | 261(14)                | 274.92                 | 332.24                 |                        |                    | 131(2)                | 118.46                |         |
| 10.0 | 222.9(1.<br>7)    | 227(5)                 | 234.26                 | 259.46                 |                        |                    | 126(1)                | 115.89                |         |
| 10.6 | 172.0(1.<br>4)    | 172.8(7<br>)           | 174.98                 | 182.09                 | 220.11                 | 260.53             | 118.5(3)              | 112.43                |         |
| 11.0 | 152.0(1.<br>3)    | 152.4(3<br>)           | 153.59                 | 157.68                 | 177.60                 | 194.90             | 114.7(2)              | 110.14                |         |
| 12.0 | 120.7(1.<br>5)    | 120.77(<br>6)          | 121.17                 | 122.63                 | 129.98                 | 136.42             | 104.34(4<br>)         | 102.06                |         |
| 13.0 | 101.6(1.<br>7)    | 101.63(<br>2)          | 101.80                 | 102.48                 | 106.20                 | 109.80             | 93.69(2)              | 92.54                 |         |
| 14.0 | 88.3(1.8<br>)     | 88.348(<br>8)          | 88.43                  | 88.80                  | 90.95                  | 93.30              | 84.111(7<br>)         | 83.55                 |         |
| 15.0 | 78.4(1.8<br>)     | 78.427(<br>4)          | 78.47                  | 78.69                  | 80.03                  | 81.699             | 75.962(3<br>)         | 75.71                 | 169.298 |

#### Results



## Conclusions

- Compared full GR simulations of BHs on hyperbolic orbits with PN-EOB predictions
- Found agreement for the 5PN NR-calibrated EOB case for every b
- Even for non circular orbits
- Possibility of extracting information from scattering experiments to complete the EOB model