GRMHD Simulations of Binary Black Holes in magnetized disks

Roman Gold

Vasileios Paschalidis, Zachariah Etienne, Milton Ruiz, Brian Farris, Stuart Shapiro, Harald Pfeiffer

University of Maryland Joint Space Science Institute

Astro Coffee, ITP/FIAS Frankfurt, Dec 16th 2014

Phys. Rev. Lett. 109, 221102

Phys. Rev. D89, 064060

Phys. Rev. D90, 104030

<u>Outline</u>

Astrophysical context & Motivation

BHBH+disks modeling

Results, highlights

Summary & Outlook

Galaxies merge!

Formation of SMBH binaries

Begelman et al 1980

Astrophysical evidence

- SMBHs grow through accretion & merger
- SMBHs accrete & shine throughout cosmic evolution
 → SMBH merger with EM counterpart

Observational facilities:

- GWs: Pulsar Timing Arrays ~2017, eLISA 2032+
- EM transients: e.g. PanStarrs, WFIRST, LSST

EM counterparts

- BHBH in vacuum: well understood system
- Now: BHBH in (magnetized) gaseous environments
- Goal: Identify EM counterpart
- Precursor (periodicities, jets, fainting, ...)
- Afterglow (merger aftermath, rebrightening, …)
 - → Need source modeling! Know what to look for!

thin disk

THICK disk

- → *Geometrically* thin
- → Optically thick (opaque)
- \rightarrow Cold
- → Truncated near BH?
- → thermal spectrum
 - Refs: Shakura & Sunyaev 1973 Novikov & Thorne 1974

- → Geometrically thick
- → Optically thin (transparent)
- → Hot
- \rightarrow Outflows, Jets, Winds
- → non-thermal spectrum
- Refs: Narayan & Yi 1994

Binary-disk decoupling

- Disc dynamics determined by interplay between viscous and binary tidal torque
- Equate disk response (→ viscous) time scale with inspiral rate (→ GW time scale)
- solve for separation
 → decoupling radius

Binary-disk decoupling

- Disc dynamics determined by interplay between viscous and binary tidal torque
- Equate disk response (→ viscous) time scale with inspiral rate (→ GW time scale)
- solve for separation
 → decoupling radius

Magneto-rotational instability (MRI)

- disk embedded in a weak magnetic field is stable to the MRI if and only if: $\frac{d\Omega^2}{d\Omega^2} > 0$
 - → non-linear outcome is
 MHD turbulence
- On average the turbulence acts like an effective source of viscosity
- Viscous torques redistribute angular momentum
 - → causes **accretion**

Length and time scales: Computational Challenge

Length scales	Time scales
Resolve horizons $\Delta r \sim 10^{-2} M$	Time step $dt_{CFL} \sim 10^{-2} M$
MRI wavelength $\lambda_{MRI} \sim 10^{-1} M$	$r_g/c = M$
Horizon $r_{AH} \sim r_g = M$	${\cal T}^{binary}_{Kepler} ~~ \sim 2 \cdot 10^2 M$
binary separation $a\sim 10M$	${\cal T}_{Kepler}^{disk}$ & $\omega_{MRI}^{-1} \lesssim 10^3 M$
disk inner edge $r_{in}\sim 20M$	t_{GW} $\sim 10^3 M$
disk outer edge $r_{out} \sim 200 M$	(near $ ho_{max}$:) $t_{vis} \sim 10^4 M$

→ Adaptive-Mesh-Refinement (AMR)

Previous numerical work (very abbreviated, see papers)

<u>Hydro (B=0):</u>

Newtonian (SPH): Artymowicz & Lubow 1994, Cuadra et al 2008, Roedig et al 2011, 2012 MacFadyen et al 2008 GR: Farris et al 2011, Bode et al, Bogdanovic et al Force-free (all in GR): Palenzuela et al 2010 Moesta et al 2010, Alic et al 2012 MHD: Shi 2011 (Newtonian) Noble et al 2012 (Post-Newtonian) Farris et al 2012, Gold et al 2013, 2014 (GR)

Modeling of circumbinary disks

Palenzuela Alic et al 2010 et al 2012 Farris et al 2012

Methods (I): Numerical Relativity

• <u>3+1 split (foliate spacetime)</u>

- Initial data: Conformal-Thin-Sandwich Formalism
 → quasi-equilibrium data
 - → helical Killing vector
- <u>Predecoupling:</u> Analytically rotate CTS metric ID
- <u>Postdecoupling:</u>
 - **BSSN** formulation

"moving punctures" gauge conditions

- → system is strongly hyperbolic
- → Vacuum Cauchy Problem is well-posed
- → Slices penetrate horizons
- → Singularities at origin can be handled

Methods (II): ideal GRMHD Illinois GRMHD AMR code

Perfect fluid stress energy tensor

$$T^{\mu\nu} = (\rho_0 h + b^2)u^{\mu}u^{\nu} + \left(P + \frac{b^2}{2}\right)g^{\mu\nu} - b^{\mu}b^{\nu}$$

Eom: Conservation laws (incl. cooling)

 $\nabla_{\alpha}(T^{\alpha\beta} + R^{\alpha\beta}) = 0$ $\nabla_{\mu}(\rho_0 u^{\mu}) = 0$

Induction equation for A-field

$$\partial_t A_i = \tilde{\epsilon}_{ijk} v^j \tilde{B}^k - \partial_i (\alpha \Phi - \beta^j A_j)$$

Generalized Lorenz gauge condition

$$\nabla_{\mu}\mathcal{A}^{\mu} = \xi n_{\mu}\mathcal{A}^{\mu} \qquad \mathcal{A}_{\mu} = \Phi n_{\mu} + A_{\mu}$$

Methods III: Generalized Lorenz gauge

- Previously used gauge conditions have zero speed modes
- Lorenz gauge modes propagate at c *
- Generalized Lorenz gauge damps gauge modes to zero *
 → * Reduce spurious generation of B-field near AMR boundaries
- Crucial for long-term simulations

Etienne et al 2012, Paschalidis et al 2012

Farris et al 2012

Method (III): Artificial Cooling

Realistic cooling depends on detailed microphysics

 Consider two extreme opposite limiting cases (I) no-cooling

(II) radiate away all shock generated entropy on a local Keplerian time scale

$$\nabla_{\nu} T^{\mu\nu}_{MHD} = -\nabla_{\nu} T^{\mu\nu}_{RAD} = -\Lambda u^{\mu}$$

A: remove any (shock-)generated entropy

→ Bracket real situation by two limiting cases EOS: Ideal Gamma-law

Surface density profiles

RESULTS

Importance of magnetic fields

 accretion / luminosities underestimated by orders of magnitude! can't ignore magnetic fields!

1:10 (no-cooling)

• Refilling of gap/cavity

- Binary fully emersed in highly magnetized gas
- Densest gas is near the (smaller) horizon

predecoupling

Total view

Zoom-in view

Just after merger

REU team: Taylor, Kong, Khan, Connelly, Kim, Walsh

Outflows

Density (log scale)

Magnetic pressure/ Density (log scale)

→ highly magnetized, relativistic outflows

Transient jet feature around merger

AFTER MERGER:

- Enhanced collimation
- Increase in magnetic energy in outflows
- Speed up of outflow

Accretion rates / Luminosities

Colors: Binary mass-ratio 1:1, 1:2, 1:4

 \rightarrow Mass accretion rates: comparable to single BH case

→ Cooling luminosity: not sensitive to mass ratio (except 1:1 predecoupling)

 → <u>EM+KIN Luminosities</u>: Characteristic rises/peaks just after merger L_cool > L_kin > L_EM

→ <u>GW amplitude:</u> well known chirp

Variability

- far from clean (compare to 2D-thin disk studies)
- Not necessarily at binary orbital period
- Highest variability at intermediate mas ratios (confirming d'Orazio, Haiman et al)
- Little variability at larger mass ratios (as expected:
 → single BH limit)

Conclusions

Predecoupling:

Gold et. al. 2013

high accretion rates, dense material remains near horizons, persistent jets

- inspiraling and merger: Farris et al 2012 Gold et. al. 2014
 Luminosity peaks/rises, enhanced jet collimation
- First GRMHD parameter study: Gold et. al. 2013
 binary mass ratio, e.g. 1:10 cavity refills
- → Now: Time for more physics !

The next steps...

- Radiative transport (synchrotron, Compton)
 ...in progress...
- Rebrightening (viscous refilling of the hollow)
 ...in progress...
- BH spins...in progress...

Thank you for your attention!

References:

arXiv:1410.1543, PRD 90, 10, 104030 arXiv:1312.0600, PRD 89, 6, 064060 arXiv:1207.3354, PRL 109, 221102