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Stratified Flow

Figure : Image from NASA
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Equations of Motion

Navier-Stokes for a compressible Newtonian fluid

ρ
Du

Dt
= −∇p− ρg + µ∇2u, (1)

1

ρ

Dρ

Dt
+∇ · u = 0. (2)

ρcp
DT

Dt
− αT Dρ

Dt
= k∇2T + φ, (3)

where α = −ρ−1(∂ρ/∂T )p is the coefficient of thermal
expansion, cp is the specific heat, and φ represent conversion of
kinetic energy to internal energy by viscous dissipation.
Equation of state,

ρ = ρ0(1− α(T − T0)). (4)
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Equations of motion

Incompressibility condition follows from:

• unsteadiness ∼ T 2 � L2
v/v

2,

• speed ∼ u2/v2 � 1,

• gravity ∼ Lv � v2/g,

where T is characteristic time, Lv is characteristic vertical
length scale, u is the characteristic velocity, v is the speed of
sound in medium, g is gravitational constant.

1

ρ

Dρ

Dt
+∇ · u = 0⇒ ∇ · u = 0. (5)
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Equations of motion

Assume simple density form called the Boussinesq
approximation

ρ(x, t) = ρ0 + ρ̄(z) + ρ′(x, t), (6)

with |ρ′| � |ρ̄(z)| � |ρ0|.

ρcp
DT

Dt
− αT Dρ

Dt
= k∇2T + φ, (7)

becomes (after some thermodynamic approximations)

∂ρ′

∂t
+ u · ∇ρ′ = κ∇2ρ′ − ∂ρ̄

∂z
w. (8)
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Equations of Motion

Boussinesq Equations:

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p− ρ′g

ρ0
êz + ν∇2u, (9)

∇ · u = 0, (10)

∂ρ′

∂t
+ u · ∇ρ′ = κ∇2ρ′ − ∂ρ̄

∂z
w. (11)

Define the buoyancy frequency or the Brunt-Väisälä frequency

N2 = − g

ρ0

dρ̄

dz
. (12)
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Equations of Motion

Non-dimensionalisation

Du

Dt
= −∇p− ρ′êz +

1

Re
∇2u, (13)

∇ · u = 0, (14)

Dρ′

Dt
− w

F 2
h

=
1

ReSc
∇2ρ′, (15)

Characteristic velocity U , length R, time-scale R/U , pressure
ρ0U

2, density ρ0U
2/gR, and Sc = ν/κ the Schmidt number, ρ0

is the background density, and g is the gravitational constant.

Re =
UR

ν
, Fh =

U

NR
. (16)

Respectively the Reynolds number and the Froude number.
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Stability theory

• Ultimately interested in stratified turbulence but difficult.

• Initially study linear stability of flow, i.e. u = u0 + u′

where u0 is a basic state and |u′| � |u0|.
• Linear stability can give insight into important

mechanisms.

• Mechanisms can be probed further using nonlinear
simulations.
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Zigzag Instability

• Billant and Chomaz (2000) discovered new instability
unique to stratified flow.

• Confirmed experimentally, theoretically, numerically.

• Named “zigzag” instability due to structure.

• Emerges at buoyancy scale U/N where U is velocity, N is
Brunt-Väisälä frequency.
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Zigzag instability

Figure : From Billant and Chomaz (2000a). From left to right the
pictures are taken at 7, 36, 75, 109, 121, 176 seconds after the flaps
have closed. Top is frontal view, Bottom is side view.
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Our work

• Further analysis (e.g. Deloncle et al. 2011, Waite 2012) has
shown the importance of the buoyancy length scale U/N .

• Sub-buoyancy scale remains unexplored.

• Nature excites scales well below the buoyancy scale.

• Investigate linear and nonlinear evolution of sub-buoyancy
scales.
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Numerical schemes

• Spectral method with 2/3-rule dealiasing.
• Adams-Bashforth 2nd and 3rd order time-stepping.
• Diffusion term integrated exactly.
• Hyperviscosity.
• Initial state a Lamb-Chaplygin dipole subject to random

noise.

Figure : Lamb-Chaplygin Dipole.
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Numerical schemes

From Fourier analysis

dnf

dxn
=

1

2π

∫ ∞
−∞

(ik)nf̂(k)eikxdk (17)

Simple algorithm to compute derivatives

1. Compute f̂(k) from f(x)

2. Multiply f̂(k) by (ik)n

3. Invert (ik)nf̂(k) to obtain f (n)(x)

Compute Fourier transforms using FFTs in O(n log n).

Luke Bovard University of Waterloo 13



Numerical schemes

0 2 4 6
−0.5

0

0.5

1

1.5
function

0 2 4 6
−1

−0.5

0

0.5

1
spectral derivative

0 2 4 6
0

1

2

3

0 2 4 6
−2

−1

0

1

2

Figure : Adapted from Trefethen. n = 24 grid points used. Red curve
represents the exact derivative.
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Dealiasing

Need to compute terms like

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
. (18)

Potential algorithm

1. Transform the Fourier coefficients to real space

2. Multiply terms grid wise

3. Transform back to Fourier space

Simple, but has problems due to aliasing. Can be fixed by
removing 1/3 of the coefficients.
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Dealiasing

Solution to the viscous Burgers equation using spectral (red)
and pseudospectral (blue).
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∂ψ

∂t
+ ψ

∂ψ

∂x
= ν

∂2ψ

∂x2
. (19)
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Diffusion Term

Navier-Stokes in Fourier space

∂û

∂t
+ F(u · ∇u) = − 1

ρ0
kp̂− νk2û,k · û = 0. (20)

Take the dot product with k and using the orthogonality
condition we obtain

k · F(u · ∇u) +
1

ρ0
k2p̂ = 0. (21)

Isolating for pressure and substituting back in

∂û

∂t
+ F(u · ∇u)(1− kk

k2
) = −νk2û. (22)

Luke Bovard University of Waterloo 17



Diffusion Term

Equation is of the form.

∂û

∂t
+ νk2û = F (û), (23)

and can be rewritten as

∂

∂t
(ûeνk

2t) = eνk
2tF (û). (24)

Thus the diffusion term is exact.
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Hyperviscosity

Simulating high Reynolds number flow is difficult. Replace
diffusion term with higher order

νk2max = νik
i
max, (25)

1

τd

kmaxk

Figure : The inverse diffusion times, 1/τd, of the wavenumbers for the
regular viscosity, blue, and the hyperviscosity case, red.
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Growth Rates

Leading eigenmodes grow as

u, ρ ∝ C(x, y)eσt, (26)

and we can obtain the largest growth rate by the formula

σ = lim
t→∞

1

2

d lnE

dt
, (27)

E ∝ u2 + v2 + w2.
Alternative: Krylov methods.
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Linear results
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Figure : Growth rate σ for fixed Fh =(a) 0.2, (b) 0.1, (c) 0.05 with
Re= 2000 (cyan), Re= 5000 (red), Re= 10,000 (black), Re= 20,000
(blue). In panel (b) green line is hyperviscosity with Re = 20,000.
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Linear results
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Figure : Growth rate σ for fixed Re = (a)20,000, (b)10,000, (c)5000
with Fh = 0.05 (red), Fh = 0.1 (black), Fh = 0.2 (blue).
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Linear results
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Figure : The location of the second peak as a function of the

buoyancy Reynolds number Reb = ReF 2
h . The straight line is Re

2/5
b .
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Linear results
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Figure : Growth rate σ for fixed Reb. In (a), red is
Re = 20,000, Fh = 0.1 and blue is Re = 5000, Fh = 0.2, both
corresponding to Reb = 500; in (b) red is Re = 20,000, Fh = 0.05 and
blue is Re = 5000, Fh = 0.1, both corresponding to Reb = 50.
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Linear results

Figure : Perturbation vertical vorticity ωz at second peak for
Re = 20,000 (top) , 10.000 (middle) , 5000 (bottom) ; and
Fh = 0.2 (left) , 0.1 (middle) , 0.05 (right) .
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Linear results

Figure : Perturbed vertical vorticity ωz at (a) the zigzag peak (b) the
second peak for Re = 5000, Fh = 0.2.
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Nonlinear results
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Figure : Time series demonstrating the two ways of computing the
energy for Re = 5000, Fh = 0.2, and kz = 40. The blue curves
correspond to the kinetic energy separated into 2D (solid) and 3D
(dashed); the black curves are the total kinetic energy (solid) and
potential energy (dashed). All energies are domain averages.
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Nonlinear results

Figure : Evolution of the vertical vorticity for
Re = 5000, Fh = 0.2, kz = 40 for t = 15 (top right), t = 20 (top left),
t = 25 (bottom). Red corresponds to maximum vorticity and blue
corresponds to minimum vorticity.
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Nonlinear results
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Figure : Saturation levels for a range of aspect ratios δ for Re = 2000
and Fh = 0.2. The curve has slope 3.

δ = Lv/Lh is the aspect ratio. Saturation is E2D/E3D.
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Conclusions

• Linear simulations predict sub-buoyancy scale instability.

• Short-wave instability exhibits growth rates similar to
zigzag.

• Nonlinear simulation suggest saturation as δ3.
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Future Investigations

• Examine sub-buoyancy scales in other models.

• Investigate wakes behind dipole.

• Sub-dominant modes.

• Oscillatory regime.
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