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Signatures of quark matter in compact stars

Microphysical properties

< Phases of dense matter
(and neutron star structure)
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Signatures of quark matter in compact stars

Observable <«

Microphysical properties

< Phases of dense matter
(and neutron star structure)
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Mass (solar)
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Can neutron stars contain quark matter cores?



Constraining QM EoS by observing M(R)
Does a 2 My, star rule out quark matter cores (hybrid stars)?

Lots of literature on this question, with various models of quark matter

» MIT Bag Model; (Alford, Braby, Paris, Reddy, nuc1-th/0411016)

NJL models; (Paoli, Menezes, arXiv:1009.2906)

» PNJL models (Blaschke et. al, arXiv:1302.6275; Orsaria et. al.;
arXiv:1212.4213)

hadron-quark NLo model (Negreiros et. al., arXiv:1006.0380)
2-loop perturbation theory (Kurkela et. al., arXiv:1006.4062)

MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060)
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We need a model-independent parameterization of the quark matter
EoS:

» framework for relating different models to each other
» observational constraints can be expressed in universal terms



CSS: a fairly generic QM EoS

Model-independent parameterization with Constant Speed of Sound

(CSS)
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Hybrid star M(R)

Hybrid star branch in M(R) relation has 4 typical forms

Ac < Acgi
small energy density jump at
phase transition

Ae > Aepi
large energy density jump at
phase transition
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“Phase diagram” of hybrid star M(R)

Soft NM + CSS(cgy=1) Schematic
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(Seidov, 1971;  Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/9802072)

Disconnected branch exists in regions D and B.



Sensitivity to NM EoS and ¢,
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e NM EoS (HLPS=soft, NL3=hard) does not make much difference

o Higher &, favors disconnected branch.



Observability of hybrid star branches

Measure length of hybrid branch by

_ (mass of heaviest
AM = ( hybrid star > — Mians




Observability of hybrid star branches
Nirans/ Mo

mass of heavies
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e Connected branch is observable if pi.ans is not too high
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Constraints on QM EoS from max mass
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Dependence of max mass on ¢},

Soft NM + CSS(cjy = 1/3) Soft NM + CSS(cgy = 1)
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o For soft NM EoS, need c3y; 2 0.4 to get 2 My, stars



Quark matter EoS Summary

CSS (Constant Speed of Sound) is a generic parameterization of the
EoS close to a sharp first-order transition to quark matter.

Any specific model of quark matter with such a transition
corresponds to particular values of the CSS parameters
(Porans/Etrans:  AE/Etrans,  CQu)-

Its predictions for hybrid star branches then follow from the generic
CSS phase diagram.

Existence of 2M,, neutron star — constraint on CSS parameters .
For soft NM we need c3y; 2 0.4 (c3y = 1/3 for free quarks).

More measurements of M(R) would tell us more about the EoS of
nuclear/quark matter. If necessary we could enlarge CSS to allow
for density-dependent speed of sound.



r-modes and gravitational spin-down

Polar view Side view

An r-mode is a quadrupole flow

that emits gravitational radiation. It
becomes unstable (i.e. arises spon-
taneously) when a star spins fast
enough, and if the shear and bulk

viscosity are low enough.

mode pattern

The unstable r-mode can spin the star down very quickly, in a few days

if the amplitude is large enough

(Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom

astro-ph/0101136).

neutron star
spins quickly

some interior physics
damps the r-modes




r-mode instability region for nuclear matter

r—modes

Spin unstable
freq bulk
viscosit
Q

shear
viscosity
stabilizes
r—-modes

stabilizes
r—modes

Temperature T

Shear viscosity grows at
low T (long mean free
paths).

Bulk viscosity has a
resonant peak when beta
equilibration rate matches
r-mode frequency

e Instability region depends on viscosity of star's interior.
e Behavior of stars inside instability region depends on

saturation amplitude of r-mode.



Evolution of rr-mode amplitude «

d

d_? = a(Jye] — W) V6 = % = grav radiation rate (< 0)
Vv = 7 = r-mode dissipation rate

dQ

= —2Q vy a2 Q Q ~ 0.1 for typical star

dT

o= (L, — Pv) L, = neutrino emission

P\, = power from dissipation
R-mode is unstable when |7¢(Q2)| > vv(T) at infinitesimal «.
R-mode saturates when 7y («) rises with a until

’YV(T> Oésat) =76 (:> PV - PG)

In general, as.¢(T, ) is an unknown function determined by
microscopic and astrophysical damping mechanisms.



Q/Qk

R-modes and young neutron stars

Young pulsar cools into

| instability region

R-mode quickly saturates
Star spins down along
“heating=cooling” line
Star exits instability

region at {2 ~ 50 Hz,
indp of cooling model

(Alford, Schwenzer

101arXiv:1210.6091)



Could r-modes explain young pulsar’s slow

|dif /cit| [s72]

spin?
r-modes with
asa=1 2 -1
1077, Oésat ~/ 10 tO 10
could explain slow
rotation of young
J0537-6910 . pulsars (< a few
0ol ' thousand years old)
N :
Crab J0537-6910 is 4000
Vdaﬂ ..:;' years old
e =107
X ": e : st (Alford, Schwenzer
. . 5 n m—r— 00 1000 2rXiv:1210.6091)
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How quickly r-modes spin down pulsars

For aat in the range
0.01 to 0.1,

spindown is complete in
20,000 to 500 years.

(Alford, Schwenzer
arXiv:1210.6091)



GW from
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r-mode spindown of young pulsars
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Gravitational wave emission of young sources
* Advanced LIGO will become operational soon ...

» Since r-mode emission can quantitively explain the low rotation
frequencies of observed pulsars (which spin by now too slow to
emit GWSs), very young sources are promising targets

S
1078 T P
Jior
0F K1
H 102 frens
1o
g 10> =
< 104 =1
£ 10>
10°
100 feaadon Lo 1o SN 1987A
) e J0537-6910 -
advanced R e MO e
LIGO 1107 B i E e — p
; (NS=opt)  (standard) SN1957D
2 A 20NV N
10 100 150 200 300 500 700 1000 1500
v [Hz] 1027

I I
| - L L L L L T
100 150 200 300 500 700 1000 1500

. 7 § v [Hz]
Several potential sources in reach of aLigo



f [Hz]

1000

800

600

400

200

r-modes and old pulsars

Above curves, r-modes go unstable and spin down the star

L interacting
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Data for accreting pulsars
in binary systems
(LMXBs) vs instability
curves for nuclear and
hybrid stars.

Possibilities:

e additional damping
(e.g. quark matter)

e r-mode spindown is very
slow (small agat)

(Alford, Schwenzer,
arXiv:1310.3524
Haskell, Degenaar, Ho,
arXiv:1201.2101)



Spindown via r-modes of an
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r-mode spindown trajectories
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Explanations:

1) Instability boundary is
wrong (additional damping).

2) Many neutron stars (ms
pulsars and LMXBs) are
stuck in the instability
region, undergoing r-mode
spindown with fow
saturation amplitude

® (v ~ 1077

e 7 > 10K (r-mode
heating)

e they are emitting grav
waves



Gravitational waves from old ms-pulsars

In addition to the standard
case of deformations
r-modes are a promising
continuous GW-source

But, the -mode saturation

mechanism depends weakly

on source properties ...

% novel universal spindown

limit for the GW signal

Aasi, et. al.,
arXiv:1309.4027

= Millisecond pulsars are

below the aligo sensitivity

v However they should be
detectable with further
improvements or
3. generation detectors
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“R-mode temperatures”

® The connection between the
spindown curves allows to
determine the R-mode temperature
of a star with saturated r-mode
oscillations (tiny -mode scenario)
for given timing data

Ty = (ms’z/ (32))1/9

N
® Independent of the %
saturation mechanism ...
but depends on the cooling
® These are only upper bounds since 1000 ragonic ~——
the observed spindown rate can also direct hadronic ==
stem from electromagnetic radiation 0 Urea | Modiied Urea ‘
10° 2x10° 3x10°  5x10° 100 2x10°
% Measurements of temperatures of fast T. [K]

pulsars would allow us to test if

i Alford & Sch , arXiv:1310.3524
saturated tiny r-modes can be present! ord & Schwenzer, arXiv



R-modes Summary

» r-modes are sensitive to viscosity and other damping characteristics
of interior of star
» Moystery: There are stars inside the instability region for standard
“nuclear matter with viscous damping” model.
» Possible explanations:
» Microphysical extra damping (e.g. quark matter)
» Astrophysical extra damping (some currently unknown

mechanism in a nuclear matter star)
» “tiny -mode” = very low saturation amplitude



R-modes prospects

» a-LIGO will tell us whether some young neutron stars are spinning
down via r-modes

» Better temperature measurements of ms pulsars will tell us whether
they are inside the simple nuclear-viscous instability region.

» If they are inside, this tells us what value of ag,t is required for
compatibility with the simple nuclear-viscous model.

» If we also know their 2, we can see if they being heated by
r-modes ( T, ~ 10° to 106 K).

» If pulsars with f 2 300 Hz are outside (too cool) this would require
amazingly low aga; < 1078 to be compatible with the simple
nuclear-viscous model

» Now that we have calculations of r-mode spindown as a function of
general (generic power law) microphysical properties, let's start
surveying all known phases of dense matter for their spindown
predictions

» Additional astrophysical damping could save simple nuclear-viscous
model; what other mechanisms could there be?



How will we identify hybrid stars?

EoS : density discontinuity at nuclear/quark transition leads to
connected and/or disconnected branches in M(R).
We need:

» better measurements of M and R

» theoretical constraints on basic properties of QM EoS

(ptrans/gtrans‘v Ag/gtransy CéM)
» knowledge of nuclear matter EoS

Spindown : extra damping in some forms of quark matter can explain
current observations, but other scenarios (astrophysical extra damping;
r-modes with tiny amplitude) have not been ruled out.
We need:
» Better theoretical understanding of r-mode damping and saturation
mechanisms
» Better temperature measurements (ideally, of ms pulsars too)
» Detect grav waves from old pulsars (beyond advanced LIGO) or
very young neutron stars (advanced LIGO)



Constraints on QM EoS from max mass

QM + Soft Nuclear Matter QM + Hard Nuclear Matter
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