# Quark hybrid Stars: how can we identify them?

#### Prof. Mark Alford Washington University in St. Louis

Alford, Han, Prakash, arXiv:1302.4732 Alford, Schwenzer, arXiv:1310.3524

# Schematic QCD phase diagram



M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP review) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

# Signatures of quark matter in compact stars

|     | Miarank  | a second | munnaution |
|-----|----------|----------|------------|
|     | wiicropi | iysicar  | properties |
| hlo |          | 5        |            |

Observable  $\leftarrow$   $\stackrel{\text{Introphysical properties}}{(and neutron star structure)} \leftarrow$  Phases of dense matter

|              | Property                    | Nuclear phase                 | Quark phase |
|--------------|-----------------------------|-------------------------------|-------------|
| mass radius  | eqn of state $arepsilon(p)$ | known                         | unknown;    |
| mass, raulus |                             | up to $\sim {\it n_{ m sat}}$ | many models |

# Signatures of quark matter in compact stars

Observable  $\leftarrow \frac{\text{Microphysical properties}}{(\text{and neutron star structure})} \leftarrow \text{Phases of dense matter}$ 

|                  | Property                      | Nuclear phase                 | Quark phase        |
|------------------|-------------------------------|-------------------------------|--------------------|
| mass radius      | ean of state $\varepsilon(n)$ | known                         | unknown;           |
| mass, radius     | equion state $\mathcal{E}(p)$ | up to $\sim {\it n_{ m sat}}$ | many models        |
| spindown         | bulk viscosity                | Depends on                    | Depends on         |
| (spin freq, age) | shear viscosity               | phase:                        | phase:             |
|                  |                               | npe                           | unpaired           |
| cooling          | heat capacity                 | npe, $\mu$                    | CFL                |
| (town one)       | neutrino emissivity           | $n p e, \Lambda, \Sigma^{-}$  | CFL-K <sup>0</sup> |
| (temp, age)      | thermal cond.                 | n superfluid                  | 2SC                |
|                  |                               | <i>p</i> supercond            | CSL                |
| glitches         | shear modulus                 | $\pi$ condensate              | LOFF               |
| (superfluid,     | vortex pinning                | K condensate                  | 1SC                |
| crystal)         | energy                        | I                             |                    |

# Nucl/Quark EoS $\varepsilon(p) \Rightarrow$ Neutron star M(R)



Can neutron stars contain quark matter cores?

# **Constraining QM EoS by observing** M(R)

Does a 2  $M_{\odot}$  star rule out quark matter cores (hybrid stars)?

Lots of literature on this question, with various models of quark matter

- MIT Bag Model; (Alford, Braby, Paris, Reddy, nucl-th/0411016)
- NJL models; (Paoli, Menezes, arXiv:1009.2906)
- PNJL models (Blaschke et. al, arXiv:1302.6275; Orsaria et. al.; arXiv:1212.4213)
- ▶ hadron-quark NL $\sigma$  model (Negreiros et. al., arXiv:1006.0380)
- 2-loop perturbation theory (Kurkela et. al., arXiv:1006.4062)
- MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060)

We need a model-independent parameterization of the quark matter EoS:

- framework for relating different models to each other
- observational constraints can be expressed in universal terms

# CSS: a fairly generic QM EoS

 $\varepsilon(p) = \varepsilon_{\text{trans}} + \Delta \varepsilon + \frac{c^{-2}}{c^{-2}}(p - p_{\text{trans}})$ 

Model-independent parameterization with Constant Speed of Sound (CSS)

Zdunik, Haensel, arXiv:1211.1231; Alford, Han, P

Alford, Han, Prakash, arXiv:1302.4732

# **Hybrid star** M(R)

Hybrid star branch in M(R) relation has 4 typical forms



# "Phase diagram" of hybrid star M(R)



Above the red line  $(\Delta \varepsilon > \Delta \varepsilon_{crit})$ ,  $\Delta \varepsilon_{crit}$ ,  $\Delta \varepsilon_{crit}$ ,  $\omega_{crit}$ ,  $\omega_{crit}$ , connected branch disappears (Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindble



Lindblom, gr-qc/9802072)

Disconnected branch exists in regions D and B.

# Sensitivity to NM EoS and $c_{\rm QM}^2$



• NM EoS (HLPS=soft, NL3=hard) does not make much difference.

• Higher  $c_{OM}^2$  favors disconnected branch.

#### **Observability of hybrid star branches**



# **Observability of hybrid star branches**



- Connected branch is observable if  $p_{\text{trans}}$  is not too high and there is no disconnected branch
- Disconnected branch is always observable

#### **Constraints on QM EoS from max mass**





Max mass data constrains QM EoS but does not rule out generic QM

# Dependence of max mass on $c_{\rm QM}^2$

Soft NM + CSS(
$$c_{\text{QM}}^2 = 1/3$$
)

Soft NM + CSS( $c_{\text{QM}}^2 = 1$ )



• For soft NM EoS, need  $c_{\rm QM}^2 \gtrsim 0.4$  to get 2  $M_{\odot}$  stars

# Quark matter EoS Summary

- CSS (Constant Speed of Sound) is a generic parameterization of the EoS close to a sharp first-order transition to quark matter.
- Any specific model of quark matter with such a transition corresponds to particular values of the CSS parameters (*p*<sub>trans</sub>/ε<sub>trans</sub>, Δε/ε<sub>trans</sub>, *c*<sup>2</sup><sub>QM</sub>).
   Its predictions for hybrid star branches then follow from the generic CSS phase diameter

CSS phase diagram.

- Existence of  $2M_{\odot}$  neutron star  $\rightarrow$  constraint on CSS parameters. For soft NM we need  $c_{\rm QM}^2 \gtrsim 0.4$  ( $c_{\rm QM}^2 = 1/3$  for free quarks).
- More measurements of M(R) would tell us more about the EoS of nuclear/quark matter. If necessary we could enlarge CSS to allow for density-dependent speed of sound.

# r-modes and gravitational spin-down

An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.



The unstable *r*-mode can spin the star down very quickly, in a few days if the amplitude is large enough (2706075). Fridmen and Marsink m. 55 (2706075). Liadblem

(Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom astro-ph/0101136).

| neutron star  | $\Rightarrow$ | some interior physics     |
|---------------|---------------|---------------------------|
| spins quickly |               | damps the <i>r</i> -modes |

# r-mode instability region for nuclear matter



Shear viscosity grows at low T (long mean free paths).

Bulk viscosity has a resonant peak when beta equilibration rate matches r-mode frequency

#### Temperature T

- Instability region depends on viscosity of star's interior.
- Behavior of stars inside instability region depends on saturation amplitude of r-mode.

#### Evolution of r-mode amplitude $\alpha$

$$\frac{d\alpha}{dt} = \alpha(|\gamma_G| - \gamma_V) \qquad \gamma_G = \frac{1}{\tau_G} = \text{grav radiation rate } (<0)$$
  

$$\gamma_V = \frac{1}{\tau_V} = \text{r-mode dissipation rate}$$
  

$$\frac{d\Omega}{dt} = -2Q \gamma_V \alpha^2 \Omega \qquad Q \approx 0.1 \quad \text{for typical star}$$
  

$$\frac{dT}{dt} = -\frac{1}{C_V} (L_\nu - P_V) \qquad L_\nu = \text{neutrino emission}$$
  

$$P_V = \text{power from dissipation}$$

R-mode is unstable when  $|\gamma_G(\Omega)| > \gamma_V(T)$  at infinitesimal  $\alpha$ .

R-mode saturates when  $\gamma_V(\alpha)$  rises with  $\alpha$  until

$$\gamma_{V}(T, \alpha_{\text{sat}}) = \gamma_{G} \qquad (\Rightarrow P_{V} = P_{G})$$

In general,  $\alpha_{sat}(\mathcal{T}, \Omega)$  is an unknown function determined by microscopic and astrophysical damping mechanisms.

#### R-modes and young neutron stars



# Could r-modes explain young pulsar's slow spin?



### How quickly r-modes spin down pulsars



# GW from r-mode spindown of young pulsars



Known young pulsars. For given age t,  $h_0$  is indp of current freq  $\nu$ , since if  $\Omega = 2\pi\nu$  is higher, spindown would be faster, so  $\alpha_{\rm sat}$  must be smaller to ensure we get to freq  $\Omega$  in time t.

Several known sources would be detected by advanced LIGO if they are mainly spinning down via r-modes.

#### Gravitational wave emission of young sources

- Advanced LIGO will become operational soon ...
- Since r-mode emission can *quantitively* explain the low rotation frequencies of observed pulsars (which spin by now too slow to emit GWs), very young sources are promising targets



#### r-modes and old pulsars

Above curves, r-modes go unstable and spin down the star



### Spindown via r-modes of an old neutron star



Steady-state spindown curve is determined by amplitude  $\alpha_{\rm sat}$  at which r-mode saturates.

This determines final spin frequency  $\Omega_f$ . Stars with  $\Omega < \Omega_f$  are not undergoing *r*-mode spindown.

# r-mode spindown trajectories



(Alford, Schwenzer, arXiv:1310.3524)

Explanations:

1) Instability boundary is wrong (additional damping).

2) Many neutron stars (ms pulsars and LMXBs) are stuck in the instability region, undergoing r-mode spindown with *low* saturation amplitude

- $\alpha_{\rm sat} \sim 10^{-7}$
- $T\gtrsim 10^7\,{
  m K}$  (r-mode heating)
- they are emitting grav waves

#### Gravitational waves from old ms-pulsars

- In addition to the standard case of deformations Asi, et. al., arXiv:1309.4027
   r-modes are a promising continuous GW-source
- But, the r-mode saturation mechanism depends weakly on source properties ...
  - ★ novel universal spindown limit for the GW signal
- Millisecond pulsars are below the aLigo sensitivity
- ✓ However they should be detectable with further improvements or
   3. generation detectors



Alford & Schwenzer, arXiv:1403.7500

## "R-mode temperatures"

 The connection between the spindown curves allows to determine the R-mode temperature of a star with saturated r-mode oscillations (tiny r-mode scenario) for given timing data

 $T_{rm} = \left( I\Omega\dot{\Omega} / \left( 3\hat{L} \right) \right)^{1/\theta}$ 

- Independent of the saturation mechanism ... but depends on the cooling
- These are only upper bounds since the observed spindown rate can also stem from electromagnetic radiation
- ★ Measurements of temperatures of fast pulsars would allow us to test if saturated tiny r-modes can be present!



Alford & Schwenzer, arXiv:1310.3524

# **R-modes Summary**

- r-modes are sensitive to viscosity and other damping characteristics of *interior* of star
- Mystery: There are stars *inside* the instability region for standard "nuclear matter with viscous damping" model.
- Possible explanations:
  - Microphysical extra damping (e.g. quark matter)
  - Astrophysical extra damping (some currently unknown mechanism in a nuclear matter star)
  - "tiny r-mode" = very low saturation amplitude

# **R-modes prospects**

- a-LIGO will tell us whether some young neutron stars are spinning down via r-modes
- Better temperature measurements of ms pulsars will tell us whether they are inside the simple nuclear-viscous instability region.
  - If they are inside, this tells us what value of  $\alpha_{sat}$  is required for compatibility with the simple nuclear-viscous model.
  - If we also know their  $\dot{\Omega}$ , we can see if they being heated by r-modes ( $T_{\infty} \sim 10^5$  to  $10^6$  K).
  - If pulsars with  $f\gtrsim$  300 Hz are outside (too cool) this would require amazingly low  $\alpha_{\rm sat}\lesssim 10^{-8}$  to be compatible with the simple nuclear-viscous model
- Now that we have calculations of r-mode spindown as a function of general (generic power law) microphysical properties, let's start surveying all known phases of dense matter for their spindown predictions
- Additional astrophysical damping could save simple nuclear-viscous model; what other mechanisms could there be?

# How will we identify hybrid stars?

**EoS**: density discontinuity at nuclear/quark transition leads to connected and/or disconnected branches in M(R). We need:

- better measurements of M and R
- theoretical constraints on basic properties of QM EoS
  - $(p_{\rm trans}/\varepsilon_{\rm trans}, \Delta \varepsilon/\varepsilon_{\rm trans}, c_{\rm QM}^2)$
- knowledge of nuclear matter EoS

Spindown: extra damping in some forms of quark matter can explain current observations, but other scenarios (astrophysical extra damping; r-modes with tiny amplitude) have not been ruled out.

We need:

- Better theoretical understanding of r-mode damping and saturation mechanisms
- Better temperature measurements (ideally, of ms pulsars too)
- Detect grav waves from old pulsars (beyond advanced LIGO) or very young neutron stars (advanced LIGO)

#### Constraints on QM EoS from max mass



Alford, Han, Prakash, arXiv:1302.4732; Zdunik, Haensel, arXiv:1211.1231