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Motivation
Relativistic lon Collisions




Heavy-lon Collisions

* 2003-present: QCD matter behaves fluid-like,
not gas-like (despite asymptotic freedom)

* Large “flow” signals, e.g. v,, v5, v,, Vs In
Pb+Pb collisions at LHC (correspond to 1=2..5
in CMB Background)

* Hydrodynamic models correctly describe 99%
of particles registered in experimental
detectors



Light-on-Heavy-lon Collisions

* Large “flow” signals, e.g. v,, v, also found 1n
d+Au, p+Pb collisions

superSONIC: p+Pb @ 5.02 TeV, n/s=0.16
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QGP: Matter @ 4 Trillion K

» Temperature: 4x10° K
 Lifetime: 102 sec
e Size: 1014 m

Gradients are large!

Why does hydrodynamics apply at all?
Even for small systems (p+Pb)?

Can we understand equilibration?



Motivation

Understand equilibration in relativistic ion
collisions using AdS/CFT



Goal

Solve dynamical Einstein Equations (w/ or
w/o additional fields) in asymptotic AdS
for strong gravity situations (BH
formation, BH collisions, etc.)

Want: general purpose tool to study far-
from equilibrium strongly coupled
systems!



Einstein Field Equations in GH

2A 1 .

—K (2n(uC’,,) — (1 -+ P)gm,no‘Ca) — V(pCu)

Ct=HI—[zH

(physical solutions satisfy C* = 0)
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Einstein Field Equations in GH
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Einstein Field Equations in GH

2A 1 .
0 = -1 mg,w — 8 (T#V — ETQQQ#V)
—# (2n,C) — (1 + P)gun®Ca) =V, H,) + Vi By
1 .
— iga'sgpu,a,ﬂ +M+

+evolution eq’s for H*
CH= H! —[OzH

(physical solutions satisfy C* = 0)

We solve these numerically
Slides from Hans Bantilan, CU Boulder, Oct 2014




NUMERICAL RELATIVITY

Evolution Equations:

1
0 = —59 *99#,,0,;3 g~ ,(ugl/)a,ﬁ

—H, ) + HaT® o — T3, TP,
—& (2n(,Cy) — (1 + P)gun®Ca)
1

—EASQ#V — 8 (T;w - gTaagp,V)

l

0 = Lgl3; (15 such equations, one for each uv)

Use second-order differencing to discretize these

Hans Bantilan, CU Boulder, Oct 2014




COORDINATE CHOICE NEAR THE ADS BOUNDARY

e Coordinate choice in asymptotically AdS spacetimes

o not enough to simply demand b.c.s for g,,, H,, ¢
Guv = Gy~ + (L= P)* Guw
H, = HA%S 4 (1- p)*#H,
p=(1-p)"p

o how to choose H, so that b.c.s are preserved by evolution?
e Example: tt component of field equations near p =1

Ijg(l)tt = (—8g(1)pp + 4H(1),) (1 — p) + ...

o regularity requires a delicate cancellation between terms in the
near-boundary limit

o smart coordinate choice: H(y), = 2§(1),,

Hans Bantilan, CU Boulder, Oct 2014



Numencs/Hardware

* C,C++, Fully parallel (openMPI) 'S5
* Hardware used: "

Eridanus cluster (CU Boulder, 192
cores (@ 2 GHz/core), Infiniband
interconnections

Orbatal cluster (Princeton, ~3700

cores (@ 3.5 GHz/core), Infiniband
interconnections




Simulations of BH Collisions in
Global AdS;

* Head-on Collisions
* Global AdS rather than Poincare patch

* Initial Data: pure AdS + massless scalar field
(Coulomb branch), quickly collapsing to form
BHs (non-planar horizon!)

* Use excision to simulate space-times with BHs



Heavy lon Collisions as BH
Collisions in AdS;

‘nuclear collisions’ in 3+1d as shock wave
collisions in AdS;:

Tyt o p(z1)d(z")

762 _ —2dztdx™ + dz? + dz* + dz T ®(z ), 2)d(z )




Heavy lon Collisions as BH
Collisions in AdS5

Two infinitely boosted ‘nucle1’ superimposed
become two shock waves 1n gravity

Extremely high-energy analogue of black-hole
collisions (Aichelburg-Sexl shock waves)

Hard to treat collision process via numerical
relativity

Some 1nsight may be gained analytically



THE ANTI-DE SITTER SPACETIME

\,l’ a

p=0 e The AdS; spacetime
o its boundary is causally connected
to its interior
— spacelike infinity U null infinity
— forms a timelike 4-surface
— identified with R x S*

t =10

p=1

F1GURE: Conformal sketch of the AdS5 spacetime; there is an

internal 2-sphere geometry at each point of this sketch.
Hans Bantilan. CU Boulder, Oct 2014



Metric, separation D=0.5




Metric, separation D=0.7




THE ANTI-DE SITTER SPACETIME
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to its interior
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— forms a timelike 4-surface
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t =10

p=1
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SPACE-TIME DIAGRAM OF THE BULK

t' >0
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Relevance of the regulator BH

[Bantilan and PR, 1410.4799]



“Collision” velocities
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COMPARISON TO HYDRODYNAMICS ON R31
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Ideal Hydro, ti=0.3 =
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Boundary
Energy
Density
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Simulations of BH collisions

We have numerical results for metric in all of
space-time, including boundary data

We have metric data (a bit) inside trapped
surfaces: could be useful for entanglement
entropy calculations (?)

Metric data/boundary data could be used for
comparison to analytic results

This data 1s publicly available. If you can’t
find something on our website, just ask!



AdS/CFT Phenomenology



Can AdS/CFT dynamics be
experimentally probed in
relativistic ion collisions?



AdS+hydro+cascade ("SONIC?)
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e(p=0) [GeV]

AdS+hydro+cascade

Central Energy Density

Pb+Pb @ Vs =276 TeV
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AdS+hydro+cascade

Effect of choosing Toydro

Pb+Pb @ Vs=276 TeV

Multiplicity
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AdS+hydro+cascade

AdS/CFT+hydro results are
independent of choice of
switching time

You get what you get.
No ‘tuning’
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0.45

Central Temperature Evolution

p—> Pb+Pb, Vs=2760 GeV
s p4p, s=7000 GeV
St Au+Au, Vs=62.4 GeV
B8 Cu+Cu, Vs=200 GeV
Cu+Cu, Vs=62.4 GeV
Al+Al Vs=200 GeV

Ao C4C, V=200 GeV
=8 Au+Au, Vs=200 GeV

8
T [fm/c]
[Habich, Nagle and PR, 1409.0040]



dN/(2mpr dprdy) [GeV2)
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SONIC works well for describing exp” data in AA
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SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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Rifm)

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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Rifm)
© = N W Bh U N N W
]

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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Rifm)
©C = N W B U N N DLW

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

— —t
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[Habich, Nagle and PR, 1409.0040]



SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

R ()
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Strong vs. Weak Coupling

Pressure Anisotropy
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How about making more comparisons like these???



A way to probe QCD pre-eq flow?

superSONIC: p,d,°He+Au @ 62.4 GeV
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Turbulent Gravity

2000

L

[Adams, Chesler, Liu 2013] [Gorda & Bantilan, unpublished]

Planar Horizon (Black Brane) No/Poincare Horizon



Turbulent Gravity

[Gorda & Bantilan, unpublished]



Summary/Conclusions

General Purpose numeric solutions to Einstein
Equations 1n asymptotic AdS using GH

Successful numerical solutions for BH
collisions in global AdS;

AdS (preeq)+Hydro(eq)+Hadron Cascade
works surprisingly well in describing
experimental data

More results (e.g. AdS stability) coming soon!



Bonus Material



NUMERICAL RELATIVITY

Evolution Equations:

1
0 = —59 *99#,,0,;3 g~ ,(ugl/)a,ﬁ

—H, ) + HaT® o — T3, TP,
—& (2n(,Cy) — (1 + P)gun®Ca)
1

—EASQ#V — 8 (T;w - gTaagp,V)

l

0 = Lgl3; (15 such equations, one for each uv)

Use second-order differencing to discretize these

Hans Bantilan, CU Boulder, Oct 2014




NUMERICAL RELATIVITY

Evolution Equations:

0= Ll (15 such equations, one for each uv)

Solve by a Newton-Gauss-Seidel iterative scheme:

o three-level scheme at time levels ¢"*1, ¢, ¢"~1

o knowns: f7, fi:™%, . unknowns: f"+1

o the ff} are used as an initial guess for the f};"
o one iteration step:

+1 _, fntl _ fl:;
= Tl (Rl = Lgli; and T¢l3;

(letting f;} fn+1 be an approximate solution)

o iterate until Ry|j; becomes sufficiently small

Lsl3;

n+1)




THE ANTI-DE SITTER SPACETIME

\*H o

p =0 e The AdS; spacetime

o its boundary is causally connected
to its interior

— — spacelike infinity U null infinity

— forms a timelike 4-surface

— identified with R x S*

I = U

p=1

F1GURE: Conformal sketch of the AdS5 spacetime; there is an

internal 2-sphere geometry at each point of this sketch.
Hans Bantilan. CU Boulder, Oct 2014



ASYMPTOTICALLY ANTI-DE SITTER SPACETIMES

\,“ o

p=0 e An asymptotically AdS; spacetime

o its boundary is causally connected
to its interior

— spacelike infinity U null infinity
— forms a timelike 4-surface
— identified with R x S°

o metric in local coordinates:

([ Gmn — 9225 ~ (1 — p)?

{ Yoo — gAdS (1-p)* as p—1
| gpm — AdS ~ (1 ,0)3

ft=10

for 2™ = (t,x, 6, ¢) boundary coordinates
] and p AdS radial coordinate

FIGURE: Conformal sketch of an asymptotically AdS; spacetime that
preserves the SO(3) symmetry that rotates a 2-sphere at each point.



THE ANTI-DE SITTER SPACETIME
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NUMERICAL RELATIVITY

Initial Data:

0= Le¢|ij (5 such equations, one for each p)

Solve by a multigrid method:

1,

Compute residual on fine grid

Re, = ,Cc'h. i

Inject fine grid residual R¢, and approx soln ¢ onto coarse grid
RCh — RCinj ) Ch —;) (inj°

Find approx soln (o5, on coarse grid by solving difference equation
£C2h. — d2h, fOI’ d2h — ‘CCinj _— RCinj'

Compute correction on coarse grid

Uoh = C2h — Cinj-

Interpolate correction from coarse grid to fine grid

ﬁ2h — 6h'

Generate next approx on fine grid using coarse-grid correction

~

B = Ch+ Up.
Hans Bantilan. CU Boulder, Oct 2014



NUMERICAL RELATIVITY

Other ingredients:
o Kreiss-Oliger style numerical dissipation
o Apparent horizon finder and excision
o Lapse damping
o Coordinate choice near the AdS boundary

Hans Bantilan, CU Boulder, Oct 2014




COORDINATE CHOICE NEAR THE ADS BOUNDARY

e Coordinate choice in asymptotically AdS spacetimes

o not enough to simply demand b.c.s for g,,, H,, ¢
Guv = Gy~ + (L= P)* Guw
H, = HA%S 4 (1- p)*#H,
p=(1-p)"p

o how to choose H, so that b.c.s are preserved by evolution?
e Example: tt component of field equations near p =1

Ijg(l)tt = (—8g(1)pp + 4H(1),) (1 — p) + ...

o regularity requires a delicate cancellation between terms in the
near-boundary limit

o smart coordinate choice: H(y), = 2§(1),,

Hans Bantilan, CU Boulder, Oct 2014



Infiniband connections essential

Lnxfarm: single node,

multiple cores used

Eridanus: single core
on different nodes
used

walltime (sec)

10 1520 30 50 70 100

no. of processors



From Bulk to Boundary

Wsint
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CONFORMAL FIELD THEORY DUAL

e Bulk field / CFT operator

o e.g. metric dynamics / CFT stress tensor one-point function
Guv(z™, p) (Tor (™)) cpr

e How do bulk fields encode
boundary CFT operators?

: 1 3 L
(Tw)cpr = }}f} [8_7r ((”)GW - ez, — Ezw + (p)Guv§> - tw]

Given a p = const. time-like hypersurface M, (")9“,, = —E“‘pEByV(uSm is the extrinsic
curvature of OM,, S is a space-like, outward pointing unit vector normal to the surface oM,,
Epv = guv — Su Sy is the induced 4-metric on dM,, V, is the covariant derivative operator, and

(”)G‘“, is the Einstein tensor associated with X ,,,. Setting L = 1, the non-zero components of the
(non-dynamical) Casimir contribution £,, that we have explicitly subtracted above are

tys = 3(1 — p)? /(64x), tyx = (1 = p)? /(64m), tgg = (1 — p)* sin® x/(64w), and tus = tga sin? 0.




Shocks with Transverse Profiles

Hydro velocity profile at =1 fm/c
Pb+Pb @ Vs =276 TeV

| I I N DU D D e e |

Cinit Tydo  © %
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a
|

v

[van der Schee, PR & Pratt, 2013]



Use AdS/CFT initial conditions
and compare to data

* Idea: pre-equilibrium flow for smooth, central
collisions 1s simple

 Parametrize as

v (T,7r) = —%é)r InT%(r)

[Habich, Nagle and PR, 1409.0040]
and use for different collision systems (Pb+Pb,

Aut+Au, Cut+Cu, Al+Al, C+C, p+p)

Compare: Too . _9:Too,

-~ T

Too 2Too [Scott & Vredevoogd, PRC79 2009]
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Central Temperature Evolution

p—> Pb+Pb, Vs=2760 GeV
s p4p, s=7000 GeV
St Au+Au, Vs=62.4 GeV
B8 Cu+Cu, Vs=200 GeV
Cu+Cu, Vs=62.4 GeV
Al+Al Vs=200 GeV

Ao C4C, V=200 GeV
=8 Au+Au, Vs=200 GeV

8
T [fm/c]
[Habich, Nagle and PR, 1409.0040]



dN/(2mpr dprdy) [GeV2)
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SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

C+C@ys= 200GeV ——
Al+Al@ys= 200GeV - - - -
x Cu+Cu@ys=62.4GeV
Cu+Cu@ys= 200GeV —-—-—
Au+Au@y/s=62.4GeV —-—---
Au+Au@ys= 200GeV —
Pb+Pb@y5=2.76TeV - - - -

[Habich, Nagle and PR, 1409.0040]




SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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Rifm)

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

3 | SONCemssm -t = SONCesssm-l = SONIC s -
exp. —+— exp. —+—i exp. —+—i
8 | Cut+Cu@vmp =200V + - -
7 —— — —
G —— — —
5 -
4 -
3 -
2 -
1k RG‘ -
o 1 1 1 1 1 1 1 1 1
0.2 04 06 08 02 04 06 08 02 04 0.6 08
pr [GeV] pr [GeV] pr[GeV]

[Habich, Nagle and PR, 1409.0040]



Rifm)
© = N W Bh U N N W
]

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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Rifm)
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SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade
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