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[Images from NASA/JPL-Caltech;

http://sdo.gsfc.nasa.gov/]

Stars and black holes can launchllares from._wtherrf}
corona G e ol e

These outflows are a source of e'Xﬂ’[re"r"r'le'ly“‘"""j
energetlc partlcles gurded by magnetlc flelds

Accelerated charged partlcles (electrons ,
posrtrons protons) emlt observable: X rays

i | |s a possrble generlc mechanlsm
behlnd flares and




Magnetic reconnection

* Current dissipation through resistivity = Magnetic field reconnection

* Multi-scale character: fluid theory (MHD) - kinetic theory (particles)

* Excess magnetic energy - Particle acceleration in jets and flares
ideal MHD

ideal MHD % /g
— | -

[Images obtained from Keppens, Coupling
. - / . - o Multiple Scales, NBIA school 2013]
‘ kinetic theory l ‘ resistive MHD l

How do we model phenomena at such different scales?

_ﬂ

// ideal MHD




EeREneedle in a haystack!

le image: Black hole-powered jet of electrons and sub-atomic
-s_travelling at nearly the speed of light from center of galaxy M87

PROTON

]
p=

ELECTRON

Proton: 1 fm ~ 10 m '

Fundamental
Composite  particle
particle

Supermassive black hole ‘.’{
. Electrons

M87 jet: 1.5 kpc ~ 0.5 x 1020 m are even
smaller!!
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a[ﬂFm] =0 Coupling

V. " : ¢ Magnetohydro-
dynamics (MHD)

Maxwell’'s equations Navier-Stokes equations

MPI-AMRVAC:
parallel, grid-

adaptive code KU LEUVEN



universe

From uItrareIatlwstlc black hole jets
£ to solar flares

But ...

Image taken from http://sdo.gsfc.nasa.gov/

additional physics needed for reconnection and
particle-field interaction!

> / : /
Image taken from Punsly, Black hole gravito-hydromagnetics (2008)




Initiating reconnection in MHD

» 2D force-free ideal MHD equilibrium: two repelling currents

- Tilt instability and resistivity - Reconnection - Particle
acceleration

Original ¥ = 0 contour

Displacement Later ¥ = 0 contour
<J Ro

Sketch taken from Lankalapalli et al, JCP 225 (2007)

* 3D effects - Kink (in)stability
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J(t=8.5)

s / + B =0.04
| | * Similar
‘ behaviour for
~larger B, but
| delayed

 Reconnection

* Fast forming
current sheets

] .
/ = Particle
// acceleration

/
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How far can we zoom in?

From “The Elegant Universe” by B. Greene

Current J on 24002 grid cells
- |

Spatial scale

Temporal scale
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The Elegant Universe” by B. Greene
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From “The Elegant Universe” by B. Greene
Current J on 24002 grid cells

How far can we zoom in?
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How far can we zoom in?

From “The Elegant Universe” by B. Greene

Current J on 24002 grid cells
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How far can we zoom in?

From “The Elegant Universe” by B. Greene

Current J on 24002 grid cells

1 x 104 m

Mesh refinement allows to see
MHD fine structure

The limits of the continuum
(MHD) picture are reached.

Spatial scale
Temporal scale

No new information is gained from
zooming in further

We need particles!



Test particles in MHD evolutions!

Spatial scale

From “The Elegant Universe” by B. Greene

Temporal scale



Which particles are we interested in?

Two populations of particles are considered

* Thermal plasma described by a Maxwellian distribution.
> MHD is a satisfactory description.
> The largest scales of the system are studied.

* Non-thermal plasma, with highly accelerated particles and
a power law distribution.

> Relativistic particle equations of motion are required.
> The microscopic scales of the system are studied.

_ﬂ



and now with particles

d,

va]

N E% =y g

Maxwell’'s equations

Still obtained from
fluid equations

Particles follow fields dx*

Relativistic test particles
in MHD snapshots

Relativistic equations of
motion

KU LEUVEN



[Northrop, The Adiabatic Motion of Charged Particles, (1963)]

Assumptions

B=2p/B*> (e.g.solar flares)
* Low o —>v, <<c (non-relativistic MHD)

* O, << O, relativistic particles in MHD evolutions
MHD - magnetic field, velocity and density

Test particles = collisions and effect on fields ignored
Gyroradius R ="
- Replace particlgs position by its guiding centre

Guiding
center

~10"'m—10"m << grid cell size ~ 10°m

Particle B [T]
Electron § 0.03 T
Proton 0.03 7]

[Goedbloed & Poedts, Principles of Magnetohydrodynamics, (2004)]
KU LEUVEN




Guiding centre approximation

« Charged particle trajectories (spatial part of Lorentz equation):

WV _dg_9g.y=9E_0onrv with @=Q®B/B)=®®B/B)

P =
dt m m m m

* Replace particle position by guiding centre position r =R +\
« Expand equation of motion in é% and time-average over gyration period

Orbital motion ignored. Valid if:

| « B # (0 throughout domain
Particle

» Gyro-radii smaller than characteristic
distance over which fields change:

v, 1QL<<1

¢ Qiigin [Northrop, The Adiabatic Motion of Charged Particles, (1963)]

Figure 1.1. The charged particle and its guiding center. w



So for now..

* Fluid models: Good for global dynamics and energetics
But.. fail to tell you anything about kinetic processes
* Kinetic models: The opposite...

- Assume fluid models are largely correct and see how test
particles behave in the global flow:

* Acceleration mechanisms
* Particle orbits and drifts

* Non-thermal distributions
* (Radiation)

ﬂ



\
ns are interesting?

Topological measure

of reconnection
.  [Lapenta et al., Nature, 2015]

b

: ,'Li.."'
i(i rJ' BXx(VX(E,/B))/B#0




Particles coloured by parallel velocity * 200.000 Maxwellian electrons/protons
s ST | B - Randomly and uniformly initialised
* 99% in area current channels
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2.5D results: Energy distribution
20.000 Electrons 20.000 Protons

cSﬂL

ANfd(7-1), [N ]

1
]

thermal

L i ¥
i
|
»'t thermal non-thermal |*
1wt 108 104 102 100 i 10°8 107 10°® 10°® 104 107 10°2 107!

1 -1

* Particle distribution develops high energy tail
* Thermal bath is applied in periodic direction
* (Quiding centre approximation valid

_ﬂ




3D MHD effects

* Magnetic tension delays linear growth phase of instability

102

energetics
=
=9
|

=——=3D kinetic energy
—2.9D kinetic energy 1
——=3D magnetic energy

—2.5D magnetic energy







Pseudocolor o

Cycle: 90 3D MHD effects

Reconnection
everywhere
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3D results: Energy distribution
20.000 Electrons 20.000 Protons

dNfd(7-1), [N, ]

«'rthermal non-thermal

18 108 1074 1072 10? 10

-1 ~+-1

* Kink adds medium energy tail and redistributes particles in
the thermal distribution

* Differences clearly visible for electrons

* Results confirmed for 200.000 electrons w




3D results: Some more electron spectra

20.000 E_Iectrons
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Pitch angle peaked around 0 Parallel momentum develops

high energy tail in channels
and medium tail due to kink
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But charged particles do affect fields!
dx*
a[ﬂFm] 0 < coupling > =y
Very tim nsuming for d bE: dx”
V F* = _ mear):yt mete(i(a)lc:ﬁg) p%rtcl)cles' o @ 4

<_‘
|

Maxwell’'s equations Lorentz equation

KU LEUVEN



The kinetic picture

For many interacting particles?  Statistical description

a[ﬂFm] =0 ensemble of particles f
< coupling >

g v) _
VVF @ € Maxwell-Viasov equation _ j P

Maxwell's equations Boltzmann/Vlasov equation

KU LEUVEN



Outlook

e Comparison with kinetic (particle-in-cell) methods to
evaluate feedback of the particles on the fields

e Solve a typical test case with several methods, exploring
different physics regimes - “Relativistic GEM challenge”

* Coupling two methods with a split based on either energy
(treat energetic particles kinetically) or location (treat a
certain region Kkinetically)

* Application to relativistic reconnection (e.g. pulsar winds,
black hole flares and magnetar magnetospheres)

—> Resistive relativistic magnetohydrodynamics needed!

ﬂ






Magnetospheres of compact objects

* Compact objects are described by relativistic MHD
(RMHD) on large scales

* |nside the object ideal RMHD is an accurate description
(SRMHD module in MPI-AMRVAC)

* |nthe magnetosphere resistive RMHD is needed
* Resistivity can change several orders across the flow

* Even with low resistivity, large second derivatives of the
fields make non-ideal effects significant

- We need to be able to solve MHD in both regimes for a
range of resistivities

_ﬂ



Resistive relativistic MHD

dgal RMHD )
v, [ eTe) =0
v (P ) =0 3+ 1 split
V F* =J*/c comoving
frame
3“,Fm] =0

* Vanishing proper electric field  F* ;/0 \J7
* Fieldis magnetic  F*F, ;/0 (B*—E*20)
» No Ohmic heating uﬂF”VJ A0

V.

- Add resistivity to Ohm’s law J# = (J"u W} L Fou

Ui

Solver needed for resistive relativistic MHD w




Augmented resistive relativistic MHD
3+1 split (parallel and orthogonal to g#") gives Maxwell

equations (and energy, momentum and current conservation)

0B+ VXE = 0. And Ohm'’s law

J =0y[E +vxB— (E-v)v]+qv

0O, VH V-E = q|=kV¥.

_atE+VXB : J,

Generalised Lagrange Multiplier method -

Auimented sistem for diverience cleanincI; w



Problems with resistive RMHD

* Non-ideal processes take place on short time-scale

* RMHD becomes hyperbolic + stiff relaxation terms
(newtonian MHD becomes mixed hyperbolic/parabolic)

« Stiff terms dominate and restrict time-step severely

- Implicit-Explicit Runge-Kutta (ImEx) for resistive RMHD
- Solve fast dynamics implicitly and slow dynamics explicitly

ﬂ



Implicit-Explicit P{unge—Kutta method

* Prototypical stiff system g U=FU)+ ~ R(U)

« with € the relaxation time

* For & — oo hyperbolic (i.e. ideal MHD)

* For £ > 0 stiff system R(U) (and F(U) negligible)

* Treat stiff terms R(U) implicitly and non -stiff F(U) explicitly

1
U —u"+ Atzau FIUYT+ Atzau R[UYT,

j=l1 Jj=I

-
Ut = U”+AtZa);F[U“)]+AtZw, RIU",

i=1 i=1
cl A

e With coefficients from Butcher tableau "

; Aw



Simple example

2nd order Butcher tableau (left explicit, right implicit)

V2

higher order schemes
readily available

—|—§—:{R[U(”] + R[UY) w



Implementation for SRRMHD |

* (Conserved variables are split into set U ={X,Y}, with
e stiff X = {E} and non-stifft Y ={B, V¥, ¢,q,t, S, D}
* Rewrite the system as

(0 Y =F,(X,Y)

3
90X =F.(X,Y) +1RX(X,Y)
E

\

» Iy contains first-order spatial derivatives of Y and the
non-stiff source terms, Fy similarly for X

* Ry(X,Y)=A(Y)X =S,(Y) contains the stiff source terms

ﬂ



Implementation for SRRMHD I

* Compute the explicit intermediate values { x*, Y*}
i—1
Y*=Y"+At Y a;F[UY]
; l

n (} L] (J)
X*=X —|—AIZQU F,[UY] +ArZEmRXUf]

=1 j=I

* Andthe |mpI|C|t part

Y(i) Y*
X0 = X* + At R U]
cli) X

 With R, (X,Y)=A(Y)X + S, (Y) we then get

. At . . At -
X"V =MY* | X*+ aii—=S,(Y") | with M) = [ — ay ()A(Y*)]
€ 1

—ﬂ



Implementation for SRRMHD I

* These are all known for the SRRMHD equations
R=—7E+7v7(E -v)v—YvxB

S, =—7Yvx B,
1 42 V. V.V
Y x Yy x Yz
_ 2
V.V, V.V, —1 4+’

* @Giving the matrix M acting on the intermediate state of the
electric field found through the non-stiff part

* QObtaining the final E through the evolution of the stiff part

* Primitive variables need to be reconstructed w



Primitive variables

* Conserved variables {D, =, S, B} are known at n+1
 However, only intermediate {E*} is known

* Solution found by E = M(v) [E* + a;; Ata"S, (v, B)]

1) Primitive variable v =v" at previous step n to find E
2) Primitive variable p = p"taken at step n, to compute

S—ExB

v = ;

T —1(52 + B2+ p
i :\/l—vzj

D
p = —,

v

Tt —(E*+BH2—-Dy+p(l—7?
€ = D’Y .

3) SOlVe Pm+1 = Pm — W|th

£'(pu) () = v — 1
4i lterate /' (p) = v7e; w



Force-free magnetodynamics

* |In magnetospheres magnetic stresses are much larger
than pressure gradients

* The magnetic field adjusts itself such that the tension
vanishes - Force-free

* Force-free magnetodynamics resembles low-inertia limit of
ideal RMHD (Komissarov 2002)

- Useful comparative test for resistive RMHD and already
implemented in FFMD module of MPI-AMRVAC (several
tests available in 1D and 2D, e.g. coalescence instabillity,
X-point collapse, reconecting flux tubes, slow and fast
stationary shock, cylindrical explosion, self-similarly

decaying current sheet) w



Other options
e Strang splitting (Komissarov, 2007)

o Unstable for low resistivity and sharp discontinuities

o Used for tearing instability (Baty, 2013), electron-positron
MHD (Barkov, 2014) and in MPI-AMRVAC (SRRMHD
module with aforementioned tests)

e Strang splitting, with characteristic speeds < ¢ (Takamoto,
2011)

o Used for MRI in accretion disks (Takamoto, 2011) and
tearing instability (Petri, 2015)

o Valid for characteristic speeds smaller than speed of light
* ImEx for GRMHD (Dionysopoulou, 2013)
o Used for neutron star mergers (Dionysopoulou, 2014)

ﬂ



= (Coupling scales

| LK

How da.p arilcles accelerate and radiate in plasma around stars?

Pl :!ﬂl -2 QED

The enigmatic Crab nebula

Pulsating neutron star: Pulsar

jet

3D 7arge scale MHD simulations of the Crab nebula:
~Flow of inner pulsar wind nebula with visible kink instability
[POI’Ih et al. (201 4)] 63




ldeal MHD Equilibrium (non-force-free)
* [nitial magnetic field:

[Keppens et al., Interacting Tilt and Kink Instabilities in Repelling Current Channels (2014)]

2L Ghcos®)  forr<l, B, =+dy, /9y
l//o(x,y):< JOJOI(JO) — B:ZXV]//OzﬁBy:—al/jo/ax

(r=")cos(8) forrz1, .

L r L z z

« Two antiparallel current channels in unit circle J =VxB =~V y,2
 MHD equilibrium satisfied by

(o)

2

) +ﬂ(¢f (x.y))? forr <1

viy,’)

Vp=JxB= _Vzl//ov Wy = (](1) )2W0V Wy =

P0 forr > 1.

[Richard et al., Magnetic Reconnection Driven by Current Repulsion (1990)]




ldeal MHD Equilibrium (force-free)

* [nitial magn

etic field:

[Keppens et al., Interacting Tilt and Kink Instabilities in Repelling Current Channels (2014)]

2

W,(x,y)=: Jodo(J
0 1
(r——)

L r

N J,(jor)cos(8) forr<],

0

cos(60) forr =1,

= B=2xVy, =1

(B, =+dy,/dy
B, =—0dy,/dx

« Two antiparallel current channels in unit circle J =VxB =~V y,2
 MHD equilibrium satisfied by

Vp=JxB=0 — p=p,

B B.(vy)

[Richard et al., Magnetic Reconnection Driven by Current Repulsion (1990)]

_ {U{%)(ﬁlf{](«r, y)) forr < 1.
0

forr > 1.




Perturbed equilibrium

Perturb equilibrium by velocity field in (x,y)-plane

_04,
ne= gy sinlka) #,(x,v)=eexpl-x*—y*) £=0.0001
0
__99
v, == Psin(i2) A
v, =0

Unstable to ideal MHD instability with Alfvenic growth rates (with
variational principle) = Tilt instability [Richard et al. (1990)]

Instability facilitates nonlinear (reconnection) phase
Resistivity has little effect on linear phase, allows reconnection
What is the effect on reconnection and particle acceleration for

low plasma beta? w



Guiding centre equation of motion

mR:mCZ:q(E+V/\B)—/JVB+O(€) _cExB/B

« Guiding centre motion (parallel + drifts):

dR B B/B
o=y, o+ X <
dt B B

/ Inertial drift (including curvature drift)

ExB drift BXVB drift Bx av { Polarisation drift (only for E, = O(1))

" teers— >~ | Non —static fields drift (neglected)
®
B

[sketch from De Blank, Guiding Center Motion]
'R

s C
E 0000000000009, electron ; w




Relativistic equation of motion

- Relativistic effects modify classical drifts  m —>m,y, y=(t), u— u

» Assume non-relativistic flow (Alfvén velocities << c)

» Temporal variations field << variations due to particle motion

* Purely relativistic correction = |Drift terms in E, direction, of order v*/¢’

B [Vandervoort, The Relativistic Motion of a Charged Particle
in an Inhomogeneous Electromagnetic Field, (1960)]

N

ExB drift BxVB drift curvature drift

=

B B B B
+vj(B-V)B+v,,(uE -V)B+ BE +v,,(B-VjuE +(u, oVu,

_ﬂ




Relativistic drift

* Purely relativistic correction - |Drift terms in E| direction, of order 2 /.2

Fi

u, frame lab frame
y
z*
E ¥ /J" vy EyE)
B ” v,E, u —=p BY1=-E,%B%)
B( _Ej c je .
2 -
B AR* O(¢)
x* x
/
(A) // (B)
/

- Only important if E, =0(1) »ug =0(1) S/
» Often neglected for solar applications /

Figure 1.8. The explanation of the drift proportional to vy Ej E; .
[sketch from Northtop, The Adiabatic Motion of Charged Particles (1963)]




Guiding centre momentum and energy
 Guiding Centre parallel acceleration

electric acceleration ~ change of direction B mirror deceleration

* An (uninteresting) energy equation
2 2
my u
d —" +%+uB

dt

* Magnetic moment E(R,
2
R

Vi
Il =+ =constant

- i



Relativistic momentum and energy

- Relativistic effects modify parallel momentum
« Temporal variations field << variations due to particle motion

a>
B

dt

« Energy equation

dm,c’y
dt

=eReE+ d
/4

{

2
B
B’

jl/Z

F%w,, “eV |— quV)iJ

+0l(e?)

« Magnetic moment (adiabatic invariant, collisions neglected)

u=

2 2
myy v,

= constant

4 e



