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Astrophysical outflows
Stars and black holes can launch flares from their 

corona
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These outflows are a source of extremely 

energetic particles guided by magnetic fields

Accelerated, charged particles (electrons, 

positrons, protons) emit observable X-rays

Reconnection is a possible generic mechanism 

behind flares and particle acceleration[Images from NASA/JPL-Caltech, 

http://sdo.gsfc.nasa.gov/]



Magnetic reconnection
• Current dissipation through resistivity � Magnetic field reconnection

• Multi-scale character: fluid theory (MHD) � kinetic theory (particles) 

• Excess magnetic energy � Particle acceleration in jets and flares
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[Images obtained from Keppens, Coupling         

Multiple Scales, NBIA school 2013]

How do we model phenomena at such different scales?



Finding a needle in a haystack!

Proton: 1 fm ~ 10-15 m

Hubble image: Black hole-powered jet of electrons and sub-atomic 

particles travelling at nearly the speed of light from center of galaxy M87
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Electrons 

are even 

smaller!!
M87 jet: 1.5 kpc ~ 0.5 × 1020 m

Supermassive black hole



The continuum picture

( ) 0=+∇ µνµν
µ EMf TT

( ) 00 =∇ µ
µ ρ u

cJF /µµν
ν =∇

0][ =∂ ναµ F Coupling

Magnetohydro-
dynamics (MHD)
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Navier-Stokes equationsMaxwell’s equations

E(t), B(t)

ρ, J

ρ(t), u(t)

E, B

MPI-AMRVAC: 
parallel, grid-
adaptive code



Magnetohydrodynamics describes a wide variety of events in the 

universe

From ultrarelativistic black hole jets  …         
to solar flares

Fluids in the universe

But …              

additional physics needed for reconnection and 
particle-field interaction!
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Image taken from http://sdo.gsfc.nasa.gov/

Image taken from Punsly, Black hole gravito-hydromagnetics (2008)



Initiating reconnection in MHD
• 2D force-free ideal MHD equilibrium: two repelling currents

• � Tilt instability and resistivity � Reconnection � Particle 

acceleration

)0( =tJ

Sketch taken from Lankalapalli et al, JCP 225 (2007)

• 3D effects � Kink (in)stability
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J(t=0)
8



9

J(t=4)
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J(t=5)



11

J(t=5.5)
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J(t=6)
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J(t=6.5)
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J(t=7)
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J(t=7.5)
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J(t=8)



• β = 0.04

• Similar 

behaviour for 

larger β, but  

delayed

• Secondary  

J(t=8.5)
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• Secondary  

islands

• Reconnection

• Fast forming 

current sheets

� Particle   

acceleration



How far can we zoom in?
Current J on 24002 grid cells
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Mesh refinement allows to see 
MHD fine structure
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The limits of the continuum 
(MHD) picture are reached.

No new information is gained from 
zooming in further

We need particles!



So… What can we do?!
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From “The Elegant Universe” by B. Greene
Test particles in MHD evolutions!
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Which particles are we interested in?

Two populations of particles are considered

• Thermal plasma described by a Maxwellian distribution.

� MHD is a satisfactory description.

� The largest scales of the system are studied.
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• Non-thermal plasma, with highly accelerated particles and 

a power law distribution.

� Relativistic particle equations of motion are required.

� The microscopic scales of the system are studied. 



… and now with particles

ττ

ν
µν

µ

d

dx
F

d

xd
=

2

2

Particles follow fields 

Relativistic test particles 
in MHD snapshotscJF /µµν

ν =∇

0][ =∂ ναµ F
µ

µ

τ
v

d

dx
=

Relativistic equations of 
motion

E(t), B(t)

ρ, J

Maxwell’s equations

x(t), v(t)

E, B

Still obtained from 

fluid equations



Assumptions 
• Low                     (e.g. solar flares)

• Low                      (non-relativistic MHD)

• � relativistic particles in MHD evolutions

• MHD � magnetic field, velocity and density

[Northrop, The Adiabatic Motion of Charged Particles, (1963)]

MHDparticle tt ∂<<∂

cvA <<→σ

2/2 Bp=β
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• Test particles � collisions and effect on fields ignored

• Gyroradius

� Replace particles position by its guiding centre

[Goedbloed & Poedts, Principles of Magnetohydrodynamics, (2004)]

mmm
Bq

mv
Rc

331 10~size cell grid1010~ <<−= −−⊥γ



Guiding centre approximation
• Charged particle trajectories (spatial part of Lorentz equation):

• Replace particle position by guiding centre position
• Expand equation of motion in        and time-average over gyration period 

Orbital motion ignored. Valid if:

vΩEvBE
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Orbital motion ignored. Valid if:

• throughout domain

• Gyro-radii smaller than characteristic  

distance  over which fields change:

[Northrop, The Adiabatic Motion of Charged Particles, (1963)]

1/ <<Ω⊥ Lv

0B ≠



So for now..
• Fluid models: Good for global dynamics and energetics

But.. fail to tell you anything about kinetic processes

• Kinetic models: The opposite...

�Assume fluid models are largely correct and see how test 

particles behave in the global flow:
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particles behave in the global flow:

• Acceleration mechanisms 

• Particle orbits and drifts

• Non-thermal distributions 

• (Radiation)



Which regions are interesting?

Topological measure 

of reconnection 
[Lapenta et al., Nature, 2015]

0/))/(( ≠×∇× BBEB
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0/))/(( // ≠×∇× BBEB



Test particles initialisation
• 200.000 Maxwellian electrons/protons

• Randomly and uniformly initialised

• 99% in area current channels

Particles coloured by parallel velocity
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2.5D results: Energy distribution

20.000 Electrons 20.000 Protons

Lorentz

39

• Particle distribution develops high energy tail

• Thermal bath is applied in periodic direction

• Guiding centre approximation valid

non-thermal
non-thermal

thermal
thermal



3D MHD effects

• Magnetic tension delays linear growth phase of instability
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3D MHD effects
• Additional kink
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3D MHD effects
• Reconnection 

everywhere
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3D results: Energy distribution
20.000 Electrons 20.000 Protons

2.5D 2.5D3D 3D
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• Kink adds medium energy tail and redistributes particles in

the thermal distribution 

• Differences clearly visible for electrons

• Results confirmed for 200.000 electrons

thermal non-thermal
thermal non-thermal



3D results: Some more electron spectra

20.000 Electrons
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Pitch angle peaked around 0    Parallel momentum develops

high energy tail in channels   

and medium tail due to kink



3D results: Spatial distribution
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200.000 electrons at t = 9 

coloured by Lorentz factor



3D results: individual particle orbit
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Lorentz factor evolution

• Thermalised after cycle 

through current channel

• Expelled from current 

channel by kink

• Decelerates to thermal 

energy and re-accelerates



...  But charged particles do affect fields!

ττ

ν
µν

µ

d

dx
F

d

xd
=

2

2

cJF /µµν
ν =∇

0][ =∂ ναµ F
µ

µ

τ
v

d

dx
=coupling

Very time consuming for 

many (interacting) particles!
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Lorentz equation

E(t), B(t)

ρ, J

Maxwell’s equations

x(t), v(t)

E, B



The kinetic picture
For many interacting particles? 

Maxwell-Vlasov equationcJF /µµν
ν =∇

0][ =∂ ναµ F
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Statistical description     

ensemble of particles f
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E(t), B(t)

ρ, J

Maxwell’s equations Boltzmann/Vlasov equation

f(t, x, v)

E, B



Outlook

• Comparison with kinetic (particle-in-cell) methods to 

evaluate feedback of the particles on the fields

• Solve a typical test case with several methods, exploring 
different physics regimes � “Relativistic GEM challenge”

• Coupling two methods with a split based on either energy 

(treat energetic particles kinetically) or location (treat a 
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(treat energetic particles kinetically) or location (treat a 

certain region kinetically)

• Application to relativistic reconnection (e.g. pulsar winds, 

black hole flares and magnetar magnetospheres)

� Resistive relativistic magnetohydrodynamics needed!





Magnetospheres of compact objects

• Compact objects are described by relativistic MHD 

(RMHD) on large scales

• Inside the object ideal RMHD is an accurate description 

(SRMHD module in MPI-AMRVAC)

• In the magnetosphere resistive RMHD is needed

•
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• Resistivity can change several orders across the flow

• Even with low resistivity, large second derivatives of the 

fields make non-ideal effects significant

� We need to be able to solve MHD in both regimes for a 

range of resistivities



Ideal RMHD

3 + 1 split      
comoving
frame

Resistive relativistic MHD
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• Vanishing proper electric field

• Field is magnetic 

• No Ohmic heating 

• Add resistivity to Ohm’s law

Solver needed for resistive relativistic MHD
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done in AMRVAC



Augmented resistive relativistic MHD
µν

g3+1 split (parallel and orthogonal to       ) gives Maxwell

equations (and energy, momentum and current conservation)

And Ohm’s law
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Generalised Lagrange Multiplier method �

Augmented system for divergence cleaning 



Problems with resistive RMHD

• Non-ideal processes take place on short time-scale

• RMHD becomes hyperbolic + stiff relaxation terms 

(newtonian MHD becomes mixed hyperbolic/parabolic)

• Stiff terms dominate and restrict time-step severely 
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� Implicit-Explicit Runge-Kutta (ImEx) for resistive RMHD

� Solve fast dynamics implicitly and slow dynamics explicitly



• Prototypical stiff system 

• with      the relaxation time 

• For              hyperbolic (i.e. ideal MHD)

• For stiff system (and          negligible)

• Treat stiff terms         implicitly and non-stiff         explicitly

Implicit-Explicit Runge-Kutta method

)(
1

)( UUU RFt ε
+=∂

ε

0→ε
∞→ε

)(UF)(UR

)(UR )(UF

• With coefficients from Butcher tableau
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2nd order Butcher tableau (left explicit, right implicit)

Gives intermediate and final steps

Simple example

higher order schemes

readily available 
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Implementation for SRRMHD I

• Conserved variables are split into set                  , with

• stiff                  and non-stiff

• Rewrite the system as

}{ YX,U =






+=∂

=∂

1

)( YX,Y YFt
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• contains first-order spatial derivatives of     and the 

non-stiff source terms,       similarly for 

• contains the stiff source terms




+=∂ )(

1
)( YX,YX,X XX RFt

ε

YF Y

)()()( YXYYX,
XX

SAR ==
XF X



• Compute the explicit intermediate values 

•

Implementation for SRRMHD II

• And the implicit part

• With we then get

with    
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Implementation for SRRMHD III

• These are all known for the SRRMHD equations

59

• Giving the matrix M acting on the intermediate state of the 

electric field found through the non-stiff part 

• Obtaining the final      through the evolution of the stiff part

• Primitive variables need to be reconstructed



Primitive variables

• Conserved variables are known at n+1

• However, only intermediate         is known

• Solution found by

1) Primitive variable at previous step n to find 

2) Primitive variable taken at step n, to compute 
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3) Solve with

4) Iterate 



Force-free magnetodynamics

• In magnetospheres magnetic stresses are much larger 

than pressure gradients

• The magnetic field adjusts itself such that the tension 
vanishes � Force-free

• Force-free magnetodynamics resembles low-inertia limit of 

ideal RMHD (Komissarov 2002)
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ideal RMHD (Komissarov 2002)

� Useful comparative test for resistive RMHD and already 

implemented in FFMD module of MPI-AMRVAC (several 

tests available in 1D and 2D, e.g. coalescence instability, 

x-point collapse, reconecting flux tubes, slow and fast 

stationary shock, cylindrical explosion, self-similarly 

decaying current sheet)



Other options
• Strang splitting (Komissarov, 2007) 

o Unstable for low resistivity and sharp discontinuities 

o Used for tearing instability (Baty, 2013), electron-positron 

MHD (Barkov, 2014) and in MPI-AMRVAC (SRRMHD 

module with aforementioned tests)

• Strang splitting, with characteristic speeds < c (Takamoto, 
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• Strang splitting, with characteristic speeds < c (Takamoto, 

2011) 

o Used for MRI in accretion disks (Takamoto, 2011) and 

tearing instability (Petri, 2015)

o Valid for characteristic speeds smaller than speed of light

• ImEx for GRMHD (Dionysopoulou, 2013)

o Used for neutron star mergers (Dionysopoulou, 2014)



How do particles accelerate and radiate in plasma around stars?

Pulsating neutron star: Pulsar

Coupling scales

The enigmatic Crab nebula

Chandra image, X-ray: smaller synchrotron nebula
3D large scale MHD simulations of the Crab nebula: 
Flow of inner pulsar wind nebula with visible kink instability 
[Porth et al. (2014)] 63

jet

kink



Ideal MHD Equilibrium (non-force-free)
• Initial magnetic field:

[Keppens et al., Interacting Tilt and Kink Instabilities in Repelling Current Channels (2014)]

• Two antiparallel current channels in unit circle
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• Two antiparallel current channels in unit circle

• MHD equilibrium satisfied by

[Richard et al., Magnetic Reconnection Driven by Current Repulsion (1990)]
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Ideal MHD Equilibrium (force-free)
• Initial magnetic field:

[Keppens et al., Interacting Tilt and Kink Instabilities in Repelling Current Channels (2014)]

• Two antiparallel current channels in unit circle
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• Two antiparallel current channels in unit circle

• MHD equilibrium satisfied by

[Richard et al., Magnetic Reconnection Driven by Current Repulsion (1990)]
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Perturbed equilibrium
• Perturb equilibrium by velocity field in (x,y)-plane
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• Unstable to ideal MHD instability with Alfvénic growth rates (with 

variational principle) � Tilt instability [Richard et al. (1990)]

• Instability facilitates nonlinear (reconnection) phase

• Resistivity has little effect on linear phase, allows reconnection

• What is the effect on reconnection and particle acceleration for 

low plasma beta?
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Guiding centre equation of motion
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• Guiding centre motion (parallel + drifts):
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[sketch from De Blank, Guiding Center Motion]
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Relativistic equation of motion
• Relativistic effects modify classical drifts
• Assume non-relativistic flow (Alfvén velocities << c) 
• Temporal variations field << variations due to particle motion
• Purely relativistic correction � Drift terms in       direction, of order      

[Vandervoort, The Relativistic Motion of a Charged Particle

in an Inhomogeneous Electromagnetic Field, (1960)]
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Relativistic drift
• Purely relativistic correction � Drift terms in       direction, of order⊥E 22 / cv
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• Only important if
• Often neglected for solar applications 

[sketch from Northtop, The Adiabatic Motion of Charged Particles (1963)]
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• Guiding Centre parallel acceleration

• An (uninteresting) energy equation

Guiding centre momentum and energy
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• An (uninteresting) energy equation

• Magnetic moment
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• Relativistic effects modify parallel momentum

• Temporal variations field << variations due to particle motion
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• Energy equation

• Magnetic moment (adiabatic invariant, collisions neglected)
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