

How to Build the Building Blocks of Planets

Christian Lenz, Til Birnstiel, & Hubert Klahr Max-Planck-Institut für Astronomie

Frankfurt am Main 2017

Image: NASA

Outline

I) Planet formation and protoplanetary disks

 II) The formation of the building bricks of planets

Outline

• I) Planet formation and protoplanetary disks

H) The formation of the building bricks of planets

I) Planet Formation and Protoplanetary Disks

Disk properties and definitions

 Particle motion & evolution in protoplanetary disks

The missing link in planet formation

I) Planet Formation and Protoplanetary Disks

Disk properties and definitions

 Particle motion & evolution in protoplanetary disks

The missing link in planet formation

Christian Lenz

The Long Road From Dust to Planets

Covers 13 orders of magnitude in size = 40 (!!) orders of magnitude in mass

Turbulence Model

 $v_{turb} = \alpha_t h_g c_s, 0 \le \alpha_t \le 1$ (Shakura & Sunyaev 1973)

[HTML] Black holes in binary systems. Observational appearance. NI Shakura, RA Sunyaev - Astronomy and Astrophysics, 1973 - adsabs.harvard.edu ... 338 NI Shakura and RA Sunyaev Truly "black" objects may be found only in remote binary systems typified by a weak stellar wind from the visible component. I. The General Picture Up to 50 % of stars are in binary systems (Martynov, 1971). ... Their radiation must ionize and heat neutral interstellar Cited by 10301 Related articles All 11 versions Web of Science: 7673 Cite Save More

Typical values $\alpha_t \approx 10^{-4} - 10^{-2}$ (e.g. Turner+ 2014)

I) Planet Formation and Protoplanetary Disks

Disk properties and definitions

 Particle motion & evolution in protoplanetary disks

The missing link in planet formation

Grain Evolution Processes

Credit: Til Birnstiel; Sun+Earth: Dan Wiersema

Example of a Protoplanetary Disk

It's (mostly) not size that matters - it's the Stokes number!

I) Planet Formation and Protoplanetary Disks

Disk properties and definitions

 Particle motion & evolution in protoplanetary disks

The missing link in planet formation

Thanks to A. Morbidelli

Typical Global Size Distribution

Birnstiel+ 2015

Christian Lenz

Drift is very fast!

Particles from ~100 AU drift into the star within ~10⁴ years!!

Image: A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)

Christian Lenz

Then, how do planets form?

Stop radial drift
Particle traps
Collect dust

3. Gravitational collapse to planetesimals

Outline

I) Planet formation and protoplanetary disks

 II) The formation of the building bricks of planets

II) Formation of the Building Bricks of Planets

 Particle trapping in pressure bumps and the toy model, leading questions of the project

Planetesimal formation within our model

 Constrains on parameters for the Solar Nebula

II) Formation of the Building Bricks of Planets

 Particle trapping in pressure bumps and the toy model, leading questions of the project

- Planetesimal formation within our model
- Constrains on parameters for the Solar Nebula

Planetesimals

infinitesimal planets = building blocks of planets

bound by gravity rather than molecular binding forces (e.g. Van der Waals): >1 km (Benz & Asphaug 1999)

Christian Lenz

Particle Trapping in Pressure Bumps

distance to the star r

Thanks to Hubert Klahr & Andreas Schreiber

Rapid planetesimal formation in turbulent circumstellar discs Nature, vol. 448, p. 1022-1025

A. Johansen¹, J. Oishi², M.-M. Mac Low^{2,1}, H. Klahr¹, Th. Henning¹, A. Youdin³ ¹Max-Planck-Institut für Astronomie, Heidelberg ²American Museum of Natural History, New York ³CITA, University of Toronto, Canada

Credit: Johansen, Oichi, MacLow, Klahr, Henning & Youdin, 2007, Nature

Can coagulation cross the streaming regime?

Column/Surface Density

 $\Sigma = \int_{-\infty}^{\infty} \rho dz$

Image: NASA

Leading Questions

- Where and when do planetesimals form? How does the surface density profile look like, Σ_p(r)?
- Can we exclude certain parameter ranges of our model for the Solar Nebula?

The Planetesimal Model

- 0<ε<1: efficiency parameter
- d(r): trap distance
- M_t: trapped mass within 1 trap lifetime
- m_p: planetesimal mass

II) Formation of the Building Bricks of Planets

 Particle trapping in pressure bumps and the toy model, leading questions of the project

Planetesimal formation within our model

 Constrains on parameters for the Solar Nebula

Comments on Simulations

- Saturation/stagnation around 1 Myr
- Viscously evolving disk (dispersal)
- No...
 - -photoevaporation (sink term for the gas)
 - planetesimal collisions (2nd generation planetesimals)
 - -pebble accretion (Ormel & Klahr 2010)

Typical Evolution, $\alpha_t = 10^{-3}$, $M_{disk} = 0.05 M_{\odot}$, $r_c = 35 AU$, $\epsilon = 0.1$

Typical Evolution, $\alpha_t = 10^{-2}$, $M_{disk} = 0.05 M_{\odot}$, $r_c = 35 AU$, $\epsilon = 0.1$

Typical Evolution, $\alpha_t = 10^{-2}$, $M_{disk} = 0.05 M_{\odot}$, $r_c = 35 AU$, $\epsilon = 0.1$

Typical Evolution, $\alpha_t = 10^{-2}$, $M_{disk} = 0.05 M_{\odot}$, $r_c = 35 AU$, $\epsilon = 0.1$

II) Formation of the Building Bricks of Planets

 Particle trapping in pressure bumps and the toy model, leading questions of the project

Planetesimal formation within our model

 Constrains on parameters for the Solar Nebula

Results (1), small & light

Results (1), small & light

Results (2), small & heavy

Results (3), large & light

Results (4), large & heavy

Conclusion

Strong turbulence ($\alpha_t \approx 0.01$) for the Solar Nebula stays in harsh contradiction with our findings

Smaller disks (r_c<20 AU?) seem to help

Credit: California Institute of Technology ch

Outlook

- Pebble accretion (Ormel & Klahr 2010), mm-cm sized particles onto planetesimals
- Planetesimal-planetesimal interactions (leading to fragmentation & growth), N-Body
- Experiment with trap formation time and check other model parameters, fit the outer disk

Credit: Kouji Kanba

Summary

 Novel model: planetesimals via pebble trapping, directly linked to pebble flux

- Difficult to get a radial planetesimal profile with α_t≈10⁻² allowing the formation of our planets in the Solar System
- Further physics has to be included (ptes-ptes collisions, photoevaporation, pebble accretion, temperature model, trap formation model...)