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Overview

Motivation: potential to determine properties of ultra-dense matter
using gravitational waves from NS-NS and NS-BH binaries

multimessenger studies (sGRBs, afterglows, neutrinos)

sources of r-process elements  

Requires robust models

Recent improvements: dynamical tides during inspiral

Tidal Effective One-Body model

Conclusions
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Neutron stars (NSs)
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> 2000 observed to date

strongest gravitational environment where matter can stably exist

other extremes of physics:

spins up to 38000 rpm,  huge magnetic fields, 
superfluidity, superconductivity, solid crust, …

1939: theoretical prediction [Oppenheimer & Volkoff]

1968: discovery of pulsars [Hewish, Bell,+]

1969: pulsars = neutron stars [Gold]

> 2000 observed to date (~1/1000 stars)

masses ≳ Msun, radii ~ 10km

matter compressed to several times nuclear density

 Debris from a supernova in 1054

  Crab Pulsar

What is the nature of matter in such extreme conditions?



Phases of the strong force
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H2O

[Wambach+2011]

[credit: Garrido]
Neutron stars

(NSs)

QCD (conjectured)



NS structure
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                          deep core: ≳ 2 × 𝝆nuclear         

                 exotic states of matter?
            deconfined quarks? condensates?

                              

?
crust:  ~ km

    
            outer core:  ~ few km 
               uniform liquid?  

Theoretical difficulties:
many-body problem with strong interactions
unknown composition and equation of state (EoS) 

Experiments: properties of neutron-rich nuclei, phases of the strong force

                    impossible to reproduce conditions in NSs  



NS global properties from microphysics
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pressure vs. density                                      mass vs. radius
Einstein’s 

field equations

composition, multi-body forces, etc., reflected in the EoS
EoS determines observables (mass, radius, …)

[ Özel & Freire 2016 ]



NS radius measurements
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Masses: to ~0.0001% from pulsar timing

Radii: difficult to determine

Quiescent low-mass 
X-ray binaries,

 isolated cooling NS

[image B. Rutledge]

other methods, 

Thermonuclear X-ray bursts

[image B. Rutledge]

[image: K. Gendreau]

Millisecond pulsars: 
X-ray pulse shape of 
rotating hot-spot

pulse phase

re
lat

ive
 flu

x

x-ray intensity vs. time relative to burst start

[Galloway+2006]



Results for NS radii

systematic uncertainties:

distance
atmosphere
size of emitting region
surface composition 
identification of spectral features
magnetic field
….
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[Lattimer & Steiner 2014 ]

Examples of results

potentially more robust EoS measurements
with gravitational waves (GWs)

asymmetric rotating NSs (crust physics) 
coalescing binaries



Matter and energy curve space and warp time

That curvature is responsible for gravity

Accelerating masses generate ripples in curvature: GWs.

Fractional deviation away from flat space:

Carry enormous power:  ≈10 51 Watts (c.f. sun radiates ≈10 26 Watts)

Interact very weakly with matter.

Also produced by processes in the early universe, supernova explosions, 
asymmetric pulsars …
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Gravitational waves (GWs) in brief
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credit: NASA

distance to source
⇡ 8⇥ 10�45 s2

kgm



Measuring GWs with interferometers
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L L+ΔL

suspended mirrors

laser

beam 
splitter

photodetector

X h(t)

change in intensity due to difference in phase:

laser frequency extra roundtrip travel time in the arm

�� = 2⇡f
2�L

c
=

4⇡f

c
h(t)L



Worldwide network of GW detectors
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Advanced LIGO 

first observing run completed
  ~ 2019     design sensitivity 

Advanced Virgo 
major hardware
upgrade almost
completed

GEO 600

LIGO India 
~2020 +

KAGRA 
~2020 +

LIGO Hanford (WA)

L=4km

L=4km

LIGO Livingston (LA)



GW signal from black hole (BH) binaries
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… until they collide 

Inspiral Merger/ringdown

the orbit shrinks …

… velocity ~0.6 c,
    orbital period  ~10 ms …

36 M⦿

29 M⦿

… and merge into 
a single BH

62 M⦿

time (s) 
0.3 0.35 0.4 0.45

-1.0
-0.5
0

0.5
1.0

h(t) 
(x10-21)

waveform

BHs: regions of extreme spacetime curvature, characterized completely by only mass & spin



GW signal from BH binaries
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details of the waveform depend on the parameters (masses, spins, …)

equal mass, no spin

unequal mass, no spin

equal mass, with spins

extracting the information from the signal requires 

highly accurate models as templates for data analysis

courtesy 
A. Taracchini



Approaches to the two-body problem
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Approaches to the two-body problem
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Effective One-Body (EOB) model:

combines all information into a complete waveform model 
for LIGO searches

[Buonanno, Damour 1999, 2000]



radiation reaction forces

factorized waveforms

Effective-One-Body (EOB) approach

MAP

ν=µ/M

effective Hamiltonian Heff

Binary problem

effective spacetime

effective particle

A = 1 �
2M

r
+ ⌫ �APN(r;M, ⌫)
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HEOB(r, pr, p�;M, ⌫) = M

s

1 + 2⌫

✓
He↵

µ
� 1

◆
Hamiltonian for the dynamics:

Effective description

ds2e↵ = �A(M, ⌫, r)dt2 + B(M, ⌫, r)dr2 + r2d�2

lengthy PN description 



Complete EOB waveforms
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Evolve the two-body dynamics up to the light ring (spherical photon orbit) 

Smooth transition

Ringdown: quasinormal modes (QNM) of final BH

inspiral ringdown

waveform GW frequency

least damped 
QNM frequ.superposition

of QNMs
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Performance of EOB waveforms
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[courtesy A. Taracchini]

[Taracchini+ 2016]

no tuning

tuned

recent extension to precessing spins



GW150914 detected by LIGO
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[LSC 2016]



The importance of models for GW150914
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Search Result
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establish >5σ detection significance

perform tests of general relativity

[LSC 2016]

measure source properties



Experimental progress
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credit:
atlasoftheuniverse

LIGO’s visible volume of the universe for GWs from double neutron stars: 

initial LIGO

Advanced LIGO: 
first observing run 

design goal: ~ 1 million galaxies



GW signal from NS-NS binaries
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[data from T. Dietrich]

collapse
 to BH

≈ point-masses

NS NS

tidal effects

last ~ 20 cycles

merger post-merger

NS-NS BH-BH

>103 GW cycles rich characteristic 
frequency spectrum

> kHz



GW signal from NS-BH binaries
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tidal effects≈ point-masses

NS
BH

tidal disruption
or plunge

GW shutoff can be in 
aLIGO band 

larger modeling uncertainty in 
point-mass GWs than for NS-NS

[data from F. Foucart]

small ⇠
1

(1 + q)5

q =
mBH

mNS

NS-BH
BH - BH



QNS = �� Etidal

Tidal effects during inspiral
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tidal 
deformability

induced
quadrupole

companion’s
tidal field

dominant effect:

pressure - density

credit: B. Lackey

λ- mass

Einstein’s Eqs:
linear perturbations
to equilibrium sol.

[One 2nd order ODE]

Love number

� =
2

3
k2R

5

NS radius



Influence on the GWs
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Energy goes into deforming the NS

moving tidal bulges contribute to gravitational radiation

GW phase from energy balance:

tidal contribution: 

[ Flanagan & TH 2008,

   Vines+ 2011]
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Influence on the GW phase
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Tidal phase contribution in the stationary phase approx. :

most sensitive to the weighted average:  

for identical NSs:
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weak EoS-dependence between many NS quantities, e.g.:

“ I - Love - Q “ [moment of inertia, tidal Love number, rotational quadrupole]

NS binaries: merger frequency fpeak, post-merger spectrum

Approximate universality 
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[Read+2013]

[Rezzolla&Takami 2016]

[Yagi & Yunes 2013]



What to expect from aLIGO+Virgo 
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“standard” NS-NS event rate (40/yr),  ~1 yr of data [some caveats with the analysis]:
𝝺 to ~10-50 %,  radius to ~1-2 km, pressure to ~ factor of 2    [Lackey+2014]

similar conclusions with hybrid NR waveforms [Shibata+2016]

NS-BH systems:  𝝺/m5 to ~ 10-100 %  [Lackey+ 2013]

                                                           

     [ Lackey+2014]

example results: λ example results: pressure

many caveats



Recent model improvement: dynamic tides
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⌦

        corresponds to the NS’s fundamental oscillation modes
                    
QNS

eigenfrequency: (internal structure - dependent)!f ⇠
p
mNS/R3

R
tidal forcing frequency:

 

m⌦ ⇠ m
p
M/r3

NS’s response to the tidal field 
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EOB Hamiltonian with tidal effects
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A = App(M, ⌫, r) + �`A
AT(M, ⌫, r)adiabatic tides (AT): [Damour, Nagar, Bini+2009-2014]

𝞵MAP

HEOB(r, pr, p�, Q`m, P`m;M, ⌫,�`,!f)

ds2e↵ = �Adt2 + Bdr2 + r2d�2

good agreement with full evolution:

[TH+2016]

dynamic tides: effective description of
from approximate solutions for QNS:

A = App(M, ⌫, r) + �e↵
` (M, ⌫, r,�`,!f)A

AT(M, ⌫, r)
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Performance of the tidal EOB model
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Performance of the tidal EOB model

30
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[Bernuzzi+]



Main imprint of NS microphysics in the GWs from inspirals: tidal effects                                                              

Dynamic f-mode tides can be significant, now included in EOB

Also included: NS-BH tidal disruption signal (nonspinning case)

Further improve models and measurement potential, reduce systematics
(inspiral, NS-BH tidal disruption, NS-NS merger/post-merger)

Include more realistic physics

Accurate NR simulations are crucial to inform model developments

data analysis strategies (e.g. parameterization)

connection with multimessenger signals

Conclusions
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Outlook:



Thank you 


