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 Quark-gluon plasma thermalization [Chesler, Yaffe, Heller, Romatschke, Mateos, van der Schee]

 Quantum quenches [Balasubramanian, Buchel, Myers, van Niekerk, Das]

 Driven superconductors [Rangamani, Rozali, Wong]

Real time dynamics of
strongly correlated systems

Important conclusion:

Transition to hydrodynamic regime occurs very early!

• Directly computable

• Easy collective responses

 Turbulence in Gravity [Lehner, Green, Yang, 
Zimmerman, Chesler, Adams, Liu]

Insight into gravity gained from high-energy physics
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Emergent Collective Behavior:  Quantum effects ⬌  Out of equilibrium physics

Context: Quantum Mechanics of many-body systems

 How can we make predictions?

1) Entanglement: Indicates structure of global wave 
function.

2) RG group: Increasing length scale, a sequence of effective
descriptions is obtained.

3) Entanglement Renormalization: Careful removal of 
short-range entanglement.

4) Tensor Networks: Effective description of ground states.
Additional
dimension:

RG flow
(length scale)Analysis of entanglement

to ascertain spatial structure of strongly coupled systems

Evenbly, Vidal ‘15
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Bernard, Doyon ’12

Chang, Karch, Yarom ‘13

 Initial configuration:

1+1 dimensional system separated into two regions,

independently prepared in thermal equilibrium.

 Subsequent evolution:

Energy density

Energy flux

A growing region with a constant energy flow, the steady state, develops.

This region is described by a thermal distribution at shifted temperature.

The state carries a constant energy current.
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Bhaseen, Doyon, Lucas, Schalm ’13
Chang, Karch, Yarom ’13

Hydrodynamical evolution of 3 regions

Match solutions ↔ Asymptotics of the central region.

Bhaseen, Doyon, Lucas, Schalm ’13

Generalization to any d

• Assume ctant. homogeneous heat flow as well:

• Effective dimension reduction to 1+1.

• Linear response regime:

→ Hydro eqs. explicitly solvable.

Two exact copies initially at equilibrium,

independently thermalized.

Thermal quench in 1+1

Shock waves emanating from interface,
converge to non-equilibrium Steady State.

Conservation equations & tracelessness:

Expectation for CFT:

Bernard, Doyon ’12

Two configurations:

- Thermodynamic branch

- “second branch”

4/23



Riemann problem: When we have conservation equations like                                            ,                      

the curves along which the initial condition is transported must end on the shock wave.

Spillane, Herzog ’15
Lucas, Schalm, Doyon, Bhaseen '15 

Hartnoll, Lucas, Sachdev '16

 There is no uniqueness of solution to the non-linear PDEs.

• Doble shock solution: Mathematically correct, but not physical.

• New solution: shock + rarefaction.

Entropy condition

 The speed of the solution must be                                                                        , 
which rules out a shock moving into the hotter region.

Characteristics must end in the shockwave, not begin.
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Liu, Suh ‘13
Li, Wu, Wang, Yang ‘13

Entanglement growth: Initially quadratic, then followed by a universal linear regime.

Simple geometric picture: A wave with a sharp wave-front propagating inward from Σ, and 
the region that has been covered by the wave is entangled with the region outside Σ, 

while the region yet to be covered is not so entangled.

Context: A global quench leading to an AdS black hole as final state.

(Thin shell of matter which collapses to form a black hole)
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Sij : Energy momentum tensor on the surface
γij : Induced metric
K+,-: Extrinsic curvatures depending on embedding.

Take two spacetimes and define codimension one 
hypersurfaces Σ1/2 such that they have the same 
topology.

If the induced metric on Σ1/2 is the same (γ1 = γ2 = γ), the 
two spacetimes can be matched by identifying Σ1/2 if the 
energy-momentum on Σ satisfies

Israel ‘66

- Israel Junction Conditions -

But… is the horizon cut into 3 pieces??with
Initial condition:

There is an analytic solution…

In our setup:

Discontinuous geometry!
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Black Hole’s horizon
Singularity

Boundary

Worldvolume of the
shockwaves

Coordinates compactified:

• The horizon remains untouched

• The shockwaves are spacelike

Notice that:
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• Small distance contributions must be substracted

• We use minimal substraction scheme:

Entanglement Regularization:

with

The geometry is discontinuous:

But we replace the step function by this initial condition

Contour plot of the energy density

Intervals A, B considered:

 Shooting method to find geodesic lengths: Shoot from the tip until the desired boundary values are obtained.
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Geodesic in the bulk
Time evolution of the entanglement entropy of intervals A and B:

Define the normalized entanglement entropy:

where

Plots overlay on top of each other,

numerical behavior seems to be well approximated by
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 Conservation of entropy:

But it’s not conserved at intermediate times!

 Conclusion: Non-conservation effects are caused by non-universal contribution:

 Define the normalized total entanglement entropy:

where

Plots overlay on top of each other,

numerical behavior seems to be well approximated by

Factor with non-universal dependence 
on the parameters of the interval
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It measures which information of subsystem A is contained in subsystem B.

In other words: The amount of information that can be obtained from one of the 
subsystems by looking at the other one.

Def.)
where

Interpretation:

How does information get exchanged between 
the systems which are isolated at t=0?

Note that                               always.

Observation:

 The shockwaves transport information about 
the presence of the other heat bath., although 
they are spacelike in the bulk.
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Complementary approach – Steps:

→ Agreement between numerical results at large ɑ

and results from this approach?

Here, the metric components are discontinuous

1) Calculate geodesics in each spacetime region.

2) Add their renormalized lengths

3) Extremize the sum with respect to the meeting point.

In previous calculations,

One end on the steady state, 
another in the thermal region.

Condition for the position of the shockwave:

→ Schwarzchild coordinates!

Note:
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 In this limit, we can prove the previous universal law:

 The replacement is:

extremized for

Bernard, Doyon ‘16

 Quasiparticle description:

Low-energy spectrum of excitations of some systems are 
governed by effectively conformal theories,

when both temperatures are low.

…so the highest lying parts of the spectrum are not populated.

 Universal formula should be valid in ballistic regimes of actual electronic 
systems. Correlation functions too? Lattice model expectations?
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Distance function

 Extremization:

→ Numerical methods to solve non-linear 
algebraic equations.

 The distance function turns imaginary outside 
of some region.

(if one boundary point becomes null or 
timelike-separated from the joining point)

 Argument from Kruskal diagram → Exclude solutions with
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Liu, Suh ‘13
Li, Wu, Wang, Yang ’13

Hartman, Maldacena ‘13
• After a global quench, the entanglement 

entropy exhibits quadratic growth:

• Followed by a universal linear growth regime where

• The velocity vE depends on the final equilibrium 
state. In the case of an AdS-RN black hole,

Tsunami Velocity

• Butterfly velocity: Speed of propagation of chaotic 
behavior in the boundary theory:

Shenker, Stanford ‘13
Roberts, Stanford, Susskind ‘14

For an operator local on the thermal scale,
defined on a Tensor Network

Bound between these velocities:
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• Average Velocity

• Momentary Velocity

Constant – Evolve - Constant

t

Average entropy increase rate:

This quantity is bounded, although it can be arbitrarily large:

Normalized by the entropy density of the final state, we find

To  compare with

where

 When normalized in a physical way, we get a similar bound 
as 2d entanglement tsunamis or local quenches.

Rangamani, Rozali, Vincart-Emard ‘17

Numerically, we still 
find this bound.

 Interpretation: The shockwave seems to take the role that the 
entanglement tsunami had for a global quench.
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Two physical configurations for calculating the 
entanglement entropy.
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Hubeny, Rangamani, Takayanagi ‘07

 Choose the minimal possible configuration:

Phase transitions! Configurations = Phases

Entanglement entropies are required to satisfy certain inequalities

 Subadditivity: Araki, Lieb ‘70

 Triangle:

Example of
unphysical configuration:

Mirabi, Tanhayi, Vazirian ‘16
Bao, Chatwin-Davies ‘16

 Similar concepts with n>2 intervals?

 When enumerating the possible phases, we must exclude those with curves intersecting (unphysical phases)
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Unphysical configurations

• Do not yield lowest values for the entanglement entropy.

• In a time-dependent case, the co-dimension one surface spanned would become null or timelike.

Headrick, Takayanagi ‘07
Hubeny, Maxfield, Rangamani, Tonni ‘13

ways to join intervals
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n=3 case

Lieb, Ruskai ‘73• Strong Subadditivity inequality:

• A different inequality, which was proven for the holographic prescription:
Headrick, Takayanagi ‘07

• Monogamy of mutual information == Negativity of tripartite information:

Hayden, Headrick, Maloney ‘11

 Time dep. case

 Time dep. case

n>3 cases

• Negativity of n-partite information:

• For n=5 intervals (A, B, C, D, E), this generalizes to 5 inequalities.

Alishahiha, Mozaffar, Tanhayi '14
Mirabi, Tanhayi, Vazirian '16

• Proposed inequalities:
…which do not hold in holographic setups.

A. Wall '12
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• 42 physical phases

• 20 boundary points

• 184756 possible unions

• 84579 not totally disconnected

Colors represent different phases

Violation of 5-partite monogamy in 417 cases Generalized inequalities hold
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Bhaseen, Doyon, Lucas ‘15

Amado, Yarom ‘15

Spillane, Herzog ‘15

 A solution was found in the hydrodynamic regime

 A similar solution in the holographic setup confirmed it

 An inconsistency between results and thermodynamics was found

 The higher-dimensional case is more 
physically relevant and interesting.

Assuming that the dual-shock solution is valid approximately:

The shockwaves move with different velocities:

Statements about velocity bounds, similar to

can be derived for higher dimensions.

Lower bound not found

→ No limit for entropy decrease

Upper bound:



23/23

 Universal steady state, described by boosted black brane.

 Entanglement Entropy measures information flow.

Mutual Information grows monotonically in time.

 Entanglement Entropy decrease and increase rates are bounded.

 Shockwaves mimic the entanglement tsunami.

 Inequalities are satisfied and violated, confirming expectations.

Universal formula:

Outlook 1:

 This bulk metric is vacuum – Null Energy Condition is satisfied.

Will time-dependent bulk spacetimes that violate NEC still satisfy the inequalities?

Outlook 2:

 The low temperature regime of a lattice model can be approximated by a CFT thermal state

Can our simple universal evolution be observed in Tensor Network calculations?

Callan, He, Headrick '12
Caceres, Kundu, Pedraza, Tangarife '13

Bohrdt, Mendl, Endres, Knap '16



Thank you for your attention!


