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CONTEXT

W

[ Real time dynamics of ] l * Directly computable

strongly correlated system-s‘_J:;— === = = ~~———— « Easy collective responses

X/

*¢ Quark-gluon plasma thermalization [Chesler, Yaffe, Heller, Romatschke, Mateos, van der Schee]
% Quantum quenches [Balasubramanian, Buchel, Myers, van Niekerk, Das|

X/

% Driven superconductors [Rangamani, Rozali, Wong]

Important conclusion:

Transition to hydrodynamic regime occurs very early!

% Turbulence in Gravity [Lehner, Green, Yang,
Zimmerman, Chesler, Adams, Liu]

Insight into gravity gained from high-energy physics
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MOTIVATION

Emergent Collective Behavior: Quantum effects + Out of equilibrium physics

Context: Quantum Mechanics of many-body systems

- How can we make predictions?

() Entanglement: Indicates structure of global wave \
function.

2) RG group: Increasing length scale, a sequence of effective
descriptions is obtained.

3) Entanglement Renormalization: Careful removal of

k short-range entanglement. /

4) Tensor Networks: Effective description of ground states.
Additional

dimension:
Analysis of entanglement (length scale)

to ascertain spatial structure of strongly coupled systems

Evenbly, Vidal ‘15 A( /\ /\ /\ /\ /\ /\ \\
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SeTur ExpranaTiON

E <
j fE#O

> Initial configuration:

1+1 dimensional system separated into two regions,

independently prepared in thermal equilibrium.

T(t=0,2)=T,60(—x) + Tr 6(x)

Bernard, Doyon ‘12

Chang, Karch, Yarom ‘13

140

> Subsequent evolution:
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A growing region with a constant energy flow, the steady state, develops.
This region is described by a thermal distribution at shifted temperature.

The state carries a constant energy current.
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History REviEW

Bernard, Doyon ’12

Thermal quench in 1+1

Two exact copies initially at equilibrium,

independently thermalized.

D

Conservation equations & tracelessness:

0, (T"") = —9,(T"™") = 0
(o) = (1)

Expectation for CFT:

Shock waves emanating from interface,
converge to non-equilibrium Steady State.

Generalization to any d

Bhaseen, Doyon, Lucas, Schalm ‘13

* Assume ctant. homogeneous heat flow as well:

(T = aa T (" + (d+ 1w u)

. Effective dimension reduction to 1+1.

* Linear response regime:

|TL — TR‘ <<Tr+7Tr
- Hydro egs. explicitly solvable.

Bhaseen, Doyon, Lucas, Schalm ’13
Chang, Karch, Yarom ’13

Hydrodynamical evolution of 3 regions

Match solutions <> Asymptotics of the central region.

T = P(du*u” + ™) + 7 + 0(0%)

Two configurations:
- Thermodynamic branch
P - “second branch”




RareracTion WavVE

> There is no uniqueness of solution to the non-linear PDEs. Spillane, Herzog 15
Lucas, Schalm, Doyon, Bhaseen '15
* Doble shock solution: Mathematically correct, but not physical. Hartnoll, Lucas, Sachdev '16

¢ New solution: shock + rarefaction.

NESS
\\
Tr ) s> TR
//
t=0 t>0 (T £ D
Entropy condition
Riemann problem: When we have conservation equations like Ozt + (%(f(u)) =0,
the curves along which the initial condition is transported must end on the shock wave.
> The speed of the solution must be f'(uy) > (ur +ur)/2 > f'(ur),
which rules out a shock moving into the hotter region.
A X
T Characteristics must end in the shockwave, not begin.
TL \
: | Ty 2 Tr
rarefaction / shock
5 <
Ty, > Tr
TI{ ---------------------------------- 1 o g

A
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ENTANGLEMENT T'SUNAMIS

Liu, Suh ‘13
Context: A global quench leading to an AdS black hole as final state. Li, Wu, Wang, Yang ‘13

(Thin shell of matter which collapses to form a black hole)
2
2 — L

ds* = — (= [1—0(t) g(2)] dt* — 2dt dz + dF*)

Entanglement growth: Initially quadratic, then followed by a universal linear regime.

T

ASs(t) = ——

8A2t2—|-... ASg(t) = Seq (VZ_VE—UEt)t+"‘

/

Simple geometric picture: A wave with a sharp wave-front propagating inward from %, and
the region that has been covered by the wave is entangled with the region outside 2,
while the region yet to be covered is not so entangled.

Y —wugt by
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(JLUING SPACETIMES

Israel 66

Spacetime 2

P Take two spacetimes and define codimension one
7 /T identify / f hypersurfaces ,, such that they have the same

_Tpoints _””“ ' topology.

Spacetime 1

N If the induced metric on Z, , is the same (y, =y, =y), the
two spacetimes can be matched by identifying 2, , if the
energy-momentum on X satisfies

J (K5 — v K) = (K =7 K~) = —kSj;

— Surface X _/
! Surface > - Israel Junction Conditions -

Induced metric y1 = 7,

S;; : Energy momentum tensor on the surface
o —-— -~ Vi Induced metric
K*: Extrinsic curvatures depending on embedding.

{ \
. ds?. if v < —t :
: ds*> ={ dsi ... if —t<z<t I
[ |
| |

/

ds, if x>1 2
R L
ds® = =5 (dz° + gu (2, z, t)dz*dz”)

N Discontinuous geometry! z

There is an analytic solution...

22 222 2

() = = |1 25 (frlo =0+ o+ 0)] +| 25 (nlo — 1) = ulr+0)

with 272

But... is the horizon cut into 3 pieces??

Initial condition: f7,/r(v) — (TE + (TI% — Tf) 9(’0))
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SpaceTIME DIAGRAM

Coordinates compactified:

shockwaves

1/2 1/2
zZ—z t z—z t
T = a sinh () , R= " cosh ()
z+ zg ZH z+ zZH ZH
Black Hole’s horizon
Singularity
I
1 \ Boundary
1 /
l
i
!
t Worldvolume of the
T O “
i
1
|
l
|

Notice that:

* The horizon remains untouched

* The shockwaves are spacelike
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EnTanGLEMENT ENTROPY

The geometry is discontinuous:

T2 L2

fr/r(v) = (17 + (T3 — T7) 0(v))

But we replace the step function by this initial condition
w2 L?
4

fr(w) = fr(v) = ( (Tf + Té) + (TI% — Tg) tanh(afv))

» Shooting method to find geodesic lengths: Shoot from the tip until the desired boundary values are obtained.

Intervals A, B considered: Entanglement Regularization:
20 | B ; E
58 | ﬂ((%
= 10 i E * Small distance contributions must be substracted
i . E *  We use minimal substraction scheme:
0.5 ! \ ! 1
: N\ St = Area Area(y2"
| | 16 (Area(ia) — Area(14")
s 510-05 00 05 10 15
-1.5-1. 1.0 1. i .
. \ with Area(v4"") = —2Llog é

Contour plot of the energy density 9 / 23



UniversaL Law

L5
X 1.4(')( '
0.5 ici
0.0 Geodesic in the bulk Time evolution of the entanglement entropy of intervals A and B:
0.6
0.1255,
04 0.1250
0.1245
0.2} 9 0.1240
0.0
0.7490 . 01235
t 0749[5)'75'00 ‘ 0.1230
0.7505 -
Lot 0.0 0.5 1.0 1.5 2.0
t
. ' Sa(t=0) 0<t<ty
Define the normalized entanglement entropy: Sa(t) = Sa(t) t <t <ty
falp) = Sa(t)— Sa(t=0) Salt=00) ty<t
AP/ = Sa(t=00)—8a(t=0)
where
= (t—t1)/¢ 1.0/
— 3,02—2,03
A1 o] — Numerics
_______ 0.6
- T~ 0.4
7 Plots overlay on top of each other, RN \ 0.2
’
( numerical behavior seems to be well approximated by \l 0.0 B | ‘
‘. ) 5 ! 00 02 04 06 08 1.0
S falp) =3p” —2p 0<p<1l _- p

~ -
—
—
e e -

-
-
___——
—
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Non - UNiversaL ErFrecTs

+% Conservation of entropy: 0.2483474
Sa(t=0)4+Sp(t=0)=5S4(t=00)+ Sp(t =)

0 0.2483473
But it’s not conserved at intermediate times! c;) 0.2483472
< 0. i
Sayn(t) # const /——p
0.2483471 __
L . 0.0 0
+»» Define the normalized total entanglement entropy:
t
Satp () — Sapp(t =0)
fare(p) = where p=(t—ty)/¢
( ) SA—I—B(tmax) - SA+B(t — 0) p ( )/ 1.0 [4P(1—P)ISI . &
o Setl , "
- TTTTTTTTT - - 0.8 . iw.' .
_~ " Plots overlay on top of each other, TS % 06 " Setd \
’ N g !
/7 numerical behavior seems to be well approximated by \ :; T 04
I \ .
\ 3 / ¥y A
v fa) =l -p) . 0<p<1 02 "
TN~l L -7 0.0 . —
——————————— 00 02 04 06 08 1.0

¢ Conclusion: Non-conservation effects are caused by non-universal contribution:

falp) = 3p* = 2p° +|C(T1,, Tr, 0)|[4p(1 — p)]°

Factor with non-universal dependence
on the parameters of the interval
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MutuaL INFORMATION

How does information get exchanged between
the systems which are isolated at t=07?

Def.) .
I(A,B) =Sa+Sp—S(AUB) where S(A UB)—mln{SA+SB,S1+SQ}
Interpretation: < =T A B ¥
It measures which information of subsystem A is contained in subsystem B. ¢
In other words: The amount of information that can be obtained from one of the 4 L}
bsyst by looking at the oth : ) ]
subsystems by looking at the other one L \\\ AB, \\\
[ " | T
Note that (A, B) > 0 always.
Observation: 0;I(A, B) >0
+* The shockwaves transport information about 0.057463,
the presence of the other heat bath., although -———
they are spacelike in the bulk. _0.067461
9089 -
0.190891 :
ffffffff < 0.057459
A 0.190889 =
S ,
< 0.190887} 0.057457 ==~ ____ ]
- . (Y A S S S S S P S S S S
0.190885 | R 0.0 0.5 1.0 1.5 2.0
0.0 05 10 L5 20 t
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MarcHinGg (GEODESICS

—t

One end on the steady state,
another in the thermal region.

Condition for the position of the shockwave:

xj:tj@xj:tj

Microscopic scales
time

(L1111 1] S9000008 20000008
Gibbs ME3S Gibbs

Complementary approach — Steps:

1) Calculate geodesics in each spacetime region.
2) Add their renormalized lengths

3) Extremize the sum with respect to the meeting point.

Here, the metric components are discontinuous

71'2L2

2

fr/r(v) = (T7 + (Th — T7) 0(v))
- Agreement between numerical results at large a

and results from this approach?

Note:
Scaling limitc 2
caling limi 2 L

ds® = = (dz* + g (z, @, t)datdz”)

s e —> Schwarzchild coordinates!

Gibbs NESS Gibbs
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SMALL TEMPERATURE ExPANSION

+¢ In this limit, we can prove the previous universal law:
fa(p) = 3p* —2p° 0<p<l1
AP) = op P >0 >

+¢ The replacement is:

2
T, — 0Ty, Tr—6Tx ) OodR X O:dp o (C— ) (042t — da)t — (€ 2t)25,

0.,dp o< Opdp o< (£ —t)(t — 2x)(L +t — 2x)t + z}l.

extremized for z; =t vi{—1

¢ Quasiparticle description:

Low-energy spectrum of excitations of some systems are

governed by effectively conformal theories, 1.0 a8
when both temperatures are low.  Bernard, Doyon ‘16 0 — Nl;n_]e:i)cs
...s0 the highest lying parts of the spectrum are not populated. Ao 0.6
0.4
0.2}
» Universal formula should be valid in ballistic regimes of actual electronic 0.0
systems. Correlation functions too? Lattice model expectations? '0 0 ‘0‘2‘ 04 06 0 87 '1 0
Jo;

dr(zj, ) =log [(1 + m°T3z7) cosh 2nTr(x — €)) — (1 — (7TrZ;)?) cosh (27 TR(t — 2))] +
log [ (1 + 72T, Tr32) cosh (w(tTy, — tT + 2Tka))

+ (7*TLTrZ; — 1) cosh (w(H(Ty, + Tr) — QTRHZ))} — %log (16T Tpz;) 14/23



MarcHinG (GEODESICS - RESULTS

«» Extremization: |
VTR

- Numerical methods to solve non-linear
algebraic equations.

¢ The distance function turns imaginary outside \,
of some region. ‘

(if one boundary point becomes null or \
timelike-separated from the joining point) N 10

Xj

¢ Argument from Kruskal diagram = Exclude solutions with Distance function dR(ng gg)
53' > Zy

8
0.1255;
0.1250¢
0.1245
0.1240¢
0.1235}
0.1230°

t

02 04 0.6 08 1.0 1.2 1.4




VEeLocity IN ENTANGLEMENT (GROWTH

Liu, Suh ‘13

 After a global quench, the entanglement Li, Wu, Wang, Yang ’13

entropy exhibits quadratic growth: Hartman, Maldacena ‘13
AS(t) o t? + ...

Followed by a universal linear growth regime where

AS(t) = ’UESqugt + ...

* The velocity v, depends on the final equilibrium
state. In the case of an AdS-RN black hole,

Vd(d—2)z"1

Y —uvpt by
- < Tsunami Velocity
(2(d—1)) @

S

Butterfly velocity: Speed of propagation of chaotic
behavior in the boundary theory:

Shenker, Stanford ‘13
Roberts, Stanford, Susskind ‘14
d Wz (t) — e—thWLEeth
vp = P ErE——
Q(d - 1) For an operator local on the thermal scale,
defined on a Tensor Network
_ - - ~ o~ - -
( Bound between these velocities: \
N 1>vp > vE -

i I
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Bounps IN VELOCITIES

 Average Velocity

Average entropy increase rate:

_AS L Ty, sinh(mlTg)
= log :
Tgsinh(7lT})

Yav ="A¢ T aGe

This quantity is bounded, although it can be arbitrarily large:

li aw = —m|Tr — T
Jim vey = =l Tr = Ti |

Normalized by the entropy density of the final state, we find

Tr — T},

- < |trR 1L
|Um}‘ o ‘TR—FTL

» When normalized in a physical way, we get a similar bound
as 2d entanglement tsunamis or local quenches.

e  Momentary Velocity

L dS(E, t) <1 Numerically, we still
dt - find this bound.

v

» Interpretation: The shockwave seems to take the role that the
entanglement tsunami had for a global quench.

Rangamani, Rozali, Vincart-Emard ‘17

0.1255

0.1250
0.1245
2 0.1240
0.1235
0.1230

0.0 0.5 1.0 1.5

Constant — Evolve - Constant

<1 <+ To compare with AS(t) = vESegAst + ...,

where Ugy = Uav/seq

201
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n>2 DiscONNECTED INTERVALS

Hubeny, Rangamani, Takayanagi ‘07

Two physical configurations for calculating the

& entanglement entropy.

» Choose the minimal possible configuration:

S(AB) =min{S(A) + S(B),Sap, + San,}

: 4

Phase transitions! Configurations = Phases

Entanglement entropies are required to satisfy certain inequalities

v’ Subadditivity: Araki, Lieb 70 Example of
S(AB) < S(A) + S(B) unphysical configuration:

S(AB) > |S(A) - S(B)| - \
Mirabi, Tanhayi, Vazirian ‘16 / 7< \ aj

L . . 5
» Similar concepts with n>2 intervals? Bao, Chatwin-Davies ‘16
1 A 2 3 B 4

v’ Triangle:

» When enumerating the possible phases, we must exclude those with curves intersecting (unphysical phases)
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PaysicaL INTERVAL PHASES

1 —2

S(AB) = S(A) + S(B) < (3_}4

) “disconnected phase” £ £

S(AB) = S(ABy) + S(ABy) & (; : g) “connected phase” ®

. . . Headrick, Takayanagi ‘07
Unphysical configurations Hubeny, Maxfield, Rangamani, Tonni ‘13

* Do not yield lowest values for the entanglement entropy.

* In atime-dependent case, the co-dimension one surface spanned would become null or timelike.

I—- ——————————— -5\
|
Phase 1: Phase 2: Phase 3: I N — N! I
: 2n (2n)(N —2n)! |
I
\ ways to join intervals

1 2 3 4 5 6 1 2
Phase 4: Phase 5: Phase 6:
1 DR R 5 6 1 2 3 4 5 6 1 2 3 4 5 6
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(SENERALIZED INEQUALITIES

n=3 case

« Strong Subadditivity inequality: TN CIRrEN ¥ Time dep. case

S(AB) + S(BC) — S(ABC) — S(B) > 0
Headrick, Takayanagi ‘07
* Adifferent inequality, which was proven for the holographic prescription:

S(AB) + S(BC) — S(A) — S(C) > 0
* Monogamy of mutual information == Negativity of tripartite information:

Is(A:B:C)=S(A)+S(B)+5(C)—S(AB)—S(BC)—S(AC)+S(ABC) < 0 A. Wall '12

v Time dep. case

n>3 cases

* Forn=5intervals (A, B, C, D, E), this generalizes to 5 inequalities.

* Negativity of n-partite information:

In(Ar: As i Azt A) =) S(A) — > S(AiUA)) + Y S(AiUA; U Ay)
i=1 1<J i<j<k

T (—1)"S(A1 U Ay U U A,

* Proposed inequalities:
I (A " B:C : D) >0 ..which do not hold in holographic setups.
o Hayden, Headrick, Maloney ‘11
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Alishahiha, Mozaffar, Tanhayi '14
Mirabi, Tanhayi, Vazirian '16

I5(A:B:C:D:FE)<0



REesurrs FOR n=5 INTERVALS

O_
-10¢
42 physical phases
o -20¢
. ]
20 boundary points 9
< -30
. . wn
184756 possible unions
_40!
84579 not totally disconnected
-50+
Colors represent different phases
0 50000 100000 150000
Selection of 2n points out of N
. _ 6} . iy o ]
Violation of 5-partite monogamy in 417 cases . Generalized inequalities hold o X

wun

o LT

=

value of LHS
w

2_
1
? | . ; ‘ ."._._ : ﬂ;{ﬂ” - : I:l A : _
20000 40000 60000 80000 0 o 20000 | 40000 | 60000 | 80000

set of intervals set of intervals
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Hicaer DIMENSIONS

+* A solution was found in the hydrodynamic regime Bhaseen, Doyon, Lucas ‘15

+* A similar solution in the holographic setup confirmed it Amado, Yarom ‘15

+* An inconsistency between results and thermodynamics was found Spillane, Herzog ‘15
NESS

]
- ; Tr » The higher-dimensional case is more

' physically relevant and interesting.

Assuming that the dual-shock solution is valid approximately:

<1

1.0 Upper bound: @av,L,R(X) <1

The shockwaves move with different velocities:

0.5

-0.5
Statements about velocity bounds, similar to " OA
I / -1.0 \
0<|v < —m|Tr — T}, / , \
< || < 4G | | s 1 Lower bound not found
can be derived for higher dimensions. \ I, - No limit for entropy decrease
\ 2.0 /
N
N - 7/

22/23



CONCLUSIONS AND REMARKS

+»* Universal steady state, described by boosted black brane. ——T T T -
/
. _ _ 7/ Universal formula: >
+¢* Entanglement Entropy measures information flow. [
9.2 3
+¢ Mutual Information grows monotonically in time. Mo 7

-~y -
-

++ Entanglement Entropy decrease and increase rates are bounded.
+»+ Shockwaves mimic the entanglement tsunami.

+» Inequalities are satisfied and violated, confirming expectations.

Outlook 1: .
Callan, He, Headrick '12
» This bulk metric is vacuum — Null Energy Condition is satisfied. Caceres, Kundu, Pedraza, Tangarife 13

Will time-dependent bulk spacetimes that violate NEC still satisfy the inequalities?

Outlook 2:
oo Bohrdt, Mendl, Endres, Knap '16

» The low temperature regime of a lattice model can be approximated by a CFT thermal state

Can our simple universal evolution be observed in Tensor Network calculations?
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Thank you for your attention!



