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The General Theory of Relativity

The general theory of relativity is currently our best description of

gravitational phenomena.

It was proposed by Einstein in 1915 as a generalization of his special theory

of relativity. It has been overwhelmingly confirmed by experiments since

then, and it is nowadays an indispensable part of the toolbox of physicists

working in astrophysics and cosmology.

Mathematically, the theory is very rich from both its analytic and

geometric points of view. Over the past few decades, the subject of

mathematical general relativity has matured into an active and exciting

field of research among mathematicians.
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Important features of the Minkowski metric

In special relativity, fields live in Minkowski space, which is R4 = R× R3

endowed with the Minkowski metric

η = diag(−1, 1, 1, 1).

The Minkowski metric is the fundamental quantity that measures inner

products, lengths, distances, etc. in space-time. It provides the basic

causal structure of space-time in terms of time-like, space-like, and null-like

objects.

~x

t

|v|2 < 0

|v|2 > 0|v|2 = 0

Light-cone.

Causality: The four-velocity of any physical

entity satisfies |v |2 = ηαβv
αvβ ≤ 0. “Noth-

ing propagates faster than the speed of light.”
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From special to general relativity

In general relativity the metric η is no longer fixed but changes due to the

presence of matter/energy: ηαβ → gαβ(x), where x = (x0, x1, x2, x3) are

space-time coordinates.

The values of gαβ(x) depend on the matter/energy near x . Thus distances

and lengths vary according to the distribution of matter and energy on

space-time. This distribution, in turn, depends on the geometry of the

space-time, i.e., it depends on gαβ(x).

The corresponding dynamics is governed by Einstein’s equations

Rαβ −
1

2
Rgαβ + Λgαβ = Tαβ.

Rαβ and R are, respectively, the Ricci and scalar curvature of gαβ, Λ is a

constant (cosmological constant), and Tαβ is the stress-energy tensor of

the matter fields. Units: 8πG = 1 = c ; set Λ = 0.
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The Ricci and scalar curvature

The Ricci curvature of g is

Rαβ = gµν
( ∂2gαβ
∂xµ∂xν

+
∂2gµν
∂xα∂xβ

− ∂2gαν
∂xµ∂xβ

− ∂2gµβ
∂xα∂xν

)
+ Fαβ(g , ∂g).

The scalar curvature is

R = gµνRµν .

Rαβ and gαβ are symmetric two-tensors (4× 4 “matrix”), and R is a scalar.

Thus, Einstein’s equations are a system of second order partial differential

equations for gαβ (and whatever other fields come from Tαβ).
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Coupling gravity and matter

Consider Einstein’s equations

(?)

{
Rαβ − 1

2R gαβ = Tαβ,

∇αTαβ = 0,

where ∇ is the covariant derivative of g .

Suppose that Tαβ describes the

electric and magnetic field E and B on a region of space,

Tαβ = Tαβ(E ,B). Then ∇αTαβ = 0⇒ Maxwell’s equations, and (?)

becomes the Einstein-Maxwell system.

Suppose that Tαβ describes an ideal fluid with density % and four-velocity

u, Tαβ = Tαβ(%, u). Then ∇αTαβ = 0⇒ Euler’s equations, and (?)

becomes the Einstein-Euler system.

Matter fields = everything that is not gravity.

To couple Einstein’s equations to any matter field, all we need is Tαβ.
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Perfect fluid

Consider gravity coupled to a fluid: stars, cosmology.

For perfect fluids = no viscosity/no dissipation, we have the Einstein-Euler

system {
Rαβ − 1

2R gαβ = Tαβ,

∇αTαβ = 0,

where

Tαβ = (p + %)uαuβ + pgαβ.

Here, u is a (time-like) unit (i.e., |u|2 = gαβu
αuβ = −1 ) vector field

representing the four-velocity of the fluid particles; p and % are real valued

functions describing the pressure and energy density of the fluid.

The system is closed by an equation of state: p = p(%).
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Causality in general relativity

Causality in general relativity is formulated in the same terms as in special

relativity: the four-velocity v of any physical entity satisfies

|v |2 = gαβv
αvβ ≤ 0.

Note that that the causal structure is far more complicated than in

Minkowski space since gαβ = gαβ(x). One can better formulate causality

in terms of the domain of dependence of solutions to Einstein’s equations:

~x

t

ϕ(x)

t = 0

N

Causality in GR.

A theory is causal if for any

field ϕ its value at x depends

only on the “past domain of

dependence of x .”
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What about fluids with viscosity?

Consider fluids with viscosity, which is the degree to which a fluid under

shear sticks to itself.

Ex: oil = high viscosity; water = low viscosity.

The introduction of fluids with viscosity in general relativity is

well-motivated from a physical perspective:

I Real fluids have viscosity.

I Cosmology. Perfect fluids exhibit no dissipation. Maartens (’95):

“The conventional theory of the evolution of the universe includes a

number of dissipative processes, as it must if the current large value of

the entropy per baryon is to be accounted for. (...) important to

develop a robust model of dissipative cosmological processes in

general, so that one can analyze the overall dynamics of dissipation

without getting lost in the details of particular complex processes.”
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What about fluids with viscosity?

I Astrophysics. Viscosity can have important effects on the stability of

neutron stars (Duez et al., ’04); source of anisotropies in highly dense

objects (Herrera et at., ’14).

I The treatment of viscous fluids in the context of special relativity is

also of interest in heavy-ion collisions (Rezzolla and Zanotti, ’13).
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Einstein-Navier-Stokes

The standard equations for viscous fluids in non-relativistic physics are the

Navier-Stokes equations.

Therefore, we seek to couple Einstein to (a

relativistic version of) Navier-Stokes.

Use {
Rαβ − 1

2R gαβ = Tαβ,

∇αTαβ = 0.

All we need then is TNS
αβ (Tαβ for Navier-Stokes).
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Determining Tαβ

Tαβ is determined by the variational formulation/action principle of the

matter fields.

Action: functional S of the matter fields.

Critical points of an action S give equations of motion. For example:

I δS(E ,B) = 0⇒ Maxwell’s equations.

I δS(%, u) = 0⇒ Euler’s equations.

The action S also determines Tαβ.
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Determining Tαβ

Consider an action for the matter fields ϕ.

S(ϕ) =

∫
L(ϕ).

L(ϕ) also depends on the metric. E.g., kinetic energy (inner products);

contractions, etc. Thus L = L(ϕ, g).

Outside general relativity, g is fixed (e.g., the Minkowski metric) so this

dependence is ignored. However, in general relativity it becomes important.

The stress-energy tensor is given by

Tαβ =
1√

− det(g)

δL
δgαβ

.
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Stress-energy tensor for Navier-Stokes

We have seen that in order to couple Einstein’s equations to the

Navier-Stokes equations all we need is TNS
αβ .

This, in turn, should be

obtained from SNS .

Problem: the Navier-Stokes equations do not come from an action

principle.

Therefore, we do not know what TNS
αβ is, or how to couple it to Einstein’s

equations.

Remark: stress-energy for the Navier-Stokes equations in non-relativistic

physics is constructed “by hand.”
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Ad hoc construction

We can still postulate a TNS
αβ and couple it to Einstein’s equations.

Eckart (’40) proposed the following stress-energy tensor for a relativistic

viscous fluid

TE
αβ = (p + %)uαuβ + pgαβ − (ζ − 2

3
ϑ)παβ∇µuµ

− ϑπµαπνβ(∇µuν +∇νuµ)− κ(qαuβ + qβuα),

where παβ = gαβ + uαuβ, ζ and ϑ are the coefficients of bulk and shear

viscosity, respectively, κ is the coefficient of heat conduction, and qα is the

heat flux.

TE
αβ reduces to the stress-energy tensor for a perfect fluid when

ζ = ϑ = κ = 0, it is a covariant generalization of the non-relativistic

stress-energy tensor for Navier-Stokes, and satisfies basic thermodynamic

properties.
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Lack of causality

Hiscock and Lindblom (’85) have shown that a large number of choices of

viscous Tαβ, including Eckart’s proposal, leads to theories that are not

causal and unstable.

Two possible choices to circumvent this problem are:

1. Extend the space of variables of the theory, introducing new variables

and equations based on some physical principle. Second order theories.

2. Find a stress-energy tensor that avoids the assumptions of Hiscock and

Lindblom. First order theories.

Despite the results of Hiscock and Lidblom, TE
αβ is still used in applications

(particularly in cosmology) for the construction of phenomenological

models.
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Entropy production

Define the entropy current as

Sα = snuα + κ
qα

T
,

where s is the specific entropy, n is the rest mass density, and T is the

temperature.

The second law of thermodynamics requires that

∇αSα ≥ 0. (1)

Equation (1) cannot be assumed. Rather, it has to be verified as a

consequence of the equations of motion. This is one of the main

constraints for the construction of relativistic theories of viscosity.
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Second order theories: the Mueller-Israel-Stewart theory

A widely studied case of second order theories is the Mueller-Israel-Stewart

(MIS) (’67, ’76, ’77).

Consider a stress-energy tensor of the form

T̃αβ = (p + %)uαuβ + pgαβ + παβΠ + Παβ + Qαuβ + Qβuα.

Π, Παβ, and Qα correspond to the dissipative contributions to the

stress-energy tensor. Setting Π = −ζ∇µuµ, Qα = −κqα, and

Παβ = −ϑπµαπνβ(∇µuν +∇νuµ −
2

3
∇µuµ)

gives back TE
αβ.

In the MIS theory, the quantities Π, Παβ, and Qα are treated as new

variables on the same footing as %, uα, etc.
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Extra equations of motion

The new variables Π, Παβ, and Qα require the introduction of further

equations of motion.

In the MIS theory, one postulates an entropy current of the form

Sα = snuα +
Qα

T
− (β0Π2 + β1QµQ

µ + β2ΠµνΠµν)
uα

2T

+ α0
ΠQα

T
+ α1

ΠαµQµ
T

,

for some coefficients β0, β1, β2, α0, and α1. Next, we compute ∇αSα and

seek the simplest relation, linear in the variables Π, Παβ, and Qα, which

assures that the second law of thermodynamics ∇αSα ≥ 0 is satisfied.

This gives equations for Π, Παβ, and Qα that are appended to Einstein’s

equations.
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Summary of results for second order theories

For the MIS and other second order theories:

I Causality for certain values of the variables.

I Good models in astrophysics (accretion disks around black holes and

gravitational collapse of spherically symmetric stars).

I Analysis of viscous cosmology.

I Second law of thermodynamics.

On the other hand:

I The physical content of the αi and βi coefficients in is not apparent

(although it can be in some cases).

I The equations for Π, Παβ, and Qα are ultimately arbitrary.

I Non-relativistic limit?

I No “strong shock-waves solutions.”

I Causal under all physically relevant scenarios?

I Coupling to Einstein’s equations? (Existence of solutions?)
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Back to first order theories

Freistühler and Temple (’14) have proposed a stress-energy tensor for

relativistic viscous fluid that, for specific values of the viscosity coefficients

and an equation of state for pure radiation:

I Reduces to a perfect fluid when there is no dissipation.

I Gives a causal dynamics.

I Satisfies the second law of thermodynamics.

I Gives the correct non-relativistic limit.

I Allows strong shocks.

I Existence of solutions (no coupling to Einstein’s equations).

21/25



Back to first order theories

Freistühler and Temple (’14) have proposed a stress-energy tensor for

relativistic viscous fluid that, for specific values of the viscosity coefficients

and an equation of state for pure radiation:

I Reduces to a perfect fluid when there is no dissipation.

I Gives a causal dynamics.

I Satisfies the second law of thermodynamics.

I Gives the correct non-relativistic limit.

I Allows strong shocks.

I Existence of solutions (no coupling to Einstein’s equations).

21/25



Back to first order theories

Freistühler and Temple (’14) have proposed a stress-energy tensor for

relativistic viscous fluid that, for specific values of the viscosity coefficients

and an equation of state for pure radiation:

I Reduces to a perfect fluid when there is no dissipation.

I Gives a causal dynamics.

I Satisfies the second law of thermodynamics.

I Gives the correct non-relativistic limit.

I Allows strong shocks.

I Existence of solutions (no coupling to Einstein’s equations).

21/25



Back to first order theories

Freistühler and Temple (’14) have proposed a stress-energy tensor for

relativistic viscous fluid that, for specific values of the viscosity coefficients

and an equation of state for pure radiation:

I Reduces to a perfect fluid when there is no dissipation.

I Gives a causal dynamics.

I Satisfies the second law of thermodynamics.

I Gives the correct non-relativistic limit.

I Allows strong shocks.

I Existence of solutions (no coupling to Einstein’s equations).

21/25



Back to first order theories

Freistühler and Temple (’14) have proposed a stress-energy tensor for

relativistic viscous fluid that, for specific values of the viscosity coefficients

and an equation of state for pure radiation:

I Reduces to a perfect fluid when there is no dissipation.

I Gives a causal dynamics.

I Satisfies the second law of thermodynamics.

I Gives the correct non-relativistic limit.

I Allows strong shocks.

I Existence of solutions (no coupling to Einstein’s equations).

21/25



Back to first order theories

Freistühler and Temple (’14) have proposed a stress-energy tensor for

relativistic viscous fluid that, for specific values of the viscosity coefficients

and an equation of state for pure radiation:

I Reduces to a perfect fluid when there is no dissipation.

I Gives a causal dynamics.

I Satisfies the second law of thermodynamics.

I Gives the correct non-relativistic limit.

I Allows strong shocks.

I Existence of solutions (no coupling to Einstein’s equations).

21/25



Back to first order theories

Freistühler and Temple (’14) have proposed a stress-energy tensor for

relativistic viscous fluid that, for specific values of the viscosity coefficients

and an equation of state for pure radiation:

I Reduces to a perfect fluid when there is no dissipation.

I Gives a causal dynamics.

I Satisfies the second law of thermodynamics.

I Gives the correct non-relativistic limit.

I Allows strong shocks.

I Existence of solutions (no coupling to Einstein’s equations).

21/25



Lichnerowicz

Lichnerowicz (’55) proposed the following stress-energy tensor for a

relativistic viscous fluid:

Tαβ = (p + %)uαuβ + pgαβ − (ζ − 2

3
ϑ)παβ∇µCµ

− ϑπµαπνβ(∇µCν +∇νCµ)− κ(qαCβ + qβCα) + 2ϑπαβu
µ∇µh,

where h = p+%
n (n > 0) is the specific enthalpy of the fluid and

Cα = huα

is the enthalpy current of the fluid.

Lichnerowicz’s stress-energy tensor had been mostly ignored for many

years, but recently it has been showed as potentially viable candidate for

relativistic viscosity.
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Some results

Using Lichnerowicz’s stress-energy tensor, it is possible to show (D–, ’14;

D– and Czubak ’16; D–, Kephart, and Scherrer, ’15):

I The equations of motion are causal, including when coupling to

Einstein’s equations. This holds under the assumption that the fluid is

irrotational or under restrictions on the initial data (+ other

hypotheses).

I For certain values of the variables, the second law of thermodynamics

is satisfied.

I The correct non-relativistic limit is obtained.

I Existence of solutions (including coupling to Einstein’s equations).

I Applications to cosmology lead to different models, in particular

big-rip scenarios.

I None of these results consider all dissipative variables (e.g. shear

viscosity but no bulk viscosity, etc).
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State of affairs of relativistic viscous fluids

The question of the correct theory of relativistic viscosity is ultimately

empirical.

However, much can be constrained from basic necessary

conditions such as causality, entropy production, non-relativistic limit, etc.

Currently, there are different proposals, each one with its own strengths

and weaknesses.

Geroch and Lindblom (’90) developed a general framework for theories of

relativistic viscosity that leads to causal dynamics under many

circumstances. One then has to has to show that a particular theory (e.g.

MIS) fits in the formalism under the conditions that give rise to causality.
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General questions

Are we missing some fundamental insight?

What are the correct guiding

principles to approach the problem? E.g., should we enforce the second law

to all orders? Should we develop causality instead and try to prove the

second law a posteriori? A mix of both? Or yet should we give up the hope

for a general theory and make a case-by-case analysis?

Possible route: promote Lichnerowicz’s approach to a second order

theories.

Can numerical works help?

– Thank you for your attention –
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