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what we wmean for a “good theory of gmvitg"




, o o
Requlrements ‘.S "2
1. (t has to explain the astrophystieal observations (e.g. the
orbits of planets, self-gravitating structures) 000
4°

2. it should reproduce Galactic dynawmics considering the
observed bargowia constituents (e.g. luminous components as
stars, sub-luminous components as planets,

dust and gas) radiation and Newtonian potential which s, by

asswmption, extrapolated to Galactic scales 0%
[ 4
000 . o
4° 0%

4°
2. it should address the problem of large scale structure (e.g.
clustering of galaxies) and finally cosmological dynamices

%



Ly Space and time have to be entangled into a single space-time structure
The gravitational forces have to be expressed by the curvature of a
metric tensor field

ds* = g, dx dx,  on a four-dimensional space-time manifold

The main physical object are the gravitational potentials endowed in metric coefficients
(wmetric formulation)

ow the other hand both ™ and ¢ could be related to the gravitational gquantities
(metric-affine formulation)

Space-time is curved in itself and that its curvature is locally determined by the
distribution of the sowrces (according to the former Riemann Ldea)

The field equations for a wmetric tensor g, related to a given distribution of

matter—energy, can be achieved by starting from the Ricel curvature sealar R which is
an Lnvartant

what is the theory that satisfy these requirements?
o% »
Q° A 4
o

*° General Relativity



Physteal and mathematical asswmptions 0o 00

1. The “Principle of Relativity”, that requires all frames to
be good frames for Physies, so that no preferved inertial frame
should be chosewn a priovi (if any extst)

2. The “Principle of Equivalence”, that amounts to require Lnertial effects to be
Locally tndistinguishable from gravitational effects (in a sense, the equivalence
between the tnertial and the gravitational mass).

3. The “Principle of General Covariance”, that requires field equations to be
“generally covariant” (today, we would better say to be tnvariant under the action of
the group of all space-time diffeomorphisms).

4. The causality has to be preserved (the “Principle of
causality”, L.e. that each point of space-time should adwmit a
uwi\/ersatl,g valid notion of past, present and future).

e




5. the space-time structure has to be determineo bg etther one or both of two fields, a
Lorentzian metric g and a linear connection I

&. The metric g fixes the causal structure of space-time (the light cones) as well as
tts metrie relations (clocks and rods);

F. The connection ™ fixes the free-fall, i.e. the locally inertial observers

S et

2. A number of compatibility relations have to be satisfyed:

L) photons follow null geodesies of T,
i) T and g can be independent, a priori, but constrained, a posteriori, by some
ph 5s£oaL restrictions (the Equivalence Principle)

9. Bquivalence ?riwcLPLe meoses that T has weoessariLH to be the
Levi-Clvita connection of g

10. However if the Equivalence Principle does not holds g and I can be tndependent



why extending General Relativity ?



General Relativity and its shortcomings

General Relativity is a theory which dynawmically describes space, time and
matter under the same standard

The result is a self-consistent scheme which ts capable of
explaining a large number of gravitational

phenomena, ranging from laboratory up to
cosmological scales

Despite these good results...
" gRdisagrees with an increasingly number of observational data at IR-scales

" GRLs not renormalizable and cannot be quantized at Uv-scales

...lt seems thew, from ultraviolet up to infrared scales, that GR cannot be the
definitive theory of Gravitation also if it successfully addresses a wide range of
phenomena



Several approaches have been proposed L oroler to recover
the validity of General Relativity at all scalgs.




s Theoretical motivations: IR scale

@&
= ol =
... Dark Matter (PM) and Dark Energy (DE) are attempts
tn this wa Y

The price of preserving the simplicity of the Hilbert Lagrangian has been the
tntroduction of several odd behaving ph 5s£caL entities which, up to now, have not

beew revealed by any experimental fundamental scales (there are wo final probe for
PM and DE, e.g. at LHC)

n other words: Astrophysical observations probe the large scale effects of
missing matter (PM) and the accelerating behavior of the Hubble flow (DE)
but no final evidence of these tngredients exists, Lf we want to deal with them
under the standard of quantum particles or quantum fields

Present
~ - »

expansion
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Expandirig universe P. Salucel, M. De Laurentis (2015): Dark wmatter in Galaxies. Theory, Phenomenology,

e)qserivwewts, to appear tn The Astronomy and Astroph 5ch5 Review (2015)

NASAJA. Riess



The uantum qrav£t5 Problem: LV scales “'3
o%
The wost Lmportant goal is to obtain an effective theory whic Q|°
agrees with the other fundamental tnteractions at gquantum Level

Today, we observe and test the results of some symmetry
breakings
Ruantum Freld theory

States of system ﬁ veectors ﬁ Hilbert space
Filelos ﬁ operators J

...a quantum mechanics framework is not consistent with gravitation

S. capozziello, M. De Laurentis, S.B. Odintsov Bur. Phys. ). C (2012) 72:2062 00 000

° K°
... Fields have to be quantized but g, describes both of dywnamical aspects

of gravity and space-time background! Difficult to quantize!ll ,.oz '":



Theoretical motivations: KUV scale

To quantize the gravitational field, we have to give a quantum mechanical
description of the space-time

Ruantum Gravity Theory ﬂ unification of various tnteractions

Not avatble wp to now!

GR assumes a classieal deseription of matter which totally fails at
subatowmtic scales which are the scales of the Barly universe



The sttuation Ls dark

b 4

©.0

s General Relativity the only fundamental theory
capable of explaining the gravitational interaction?




b ’ ’ ()
« 2 Extended Theories of Gravity @ P
...alternative theories have been constdered L order to attempt, at least, a o“g

semiclassical cheme where General Relativity and its positive results could be
recovered...

the most fruitful approaches has beew that of
Extended Theories of Gravity which have become a sort of
paradigm in the study

6™ » l of gravitational interaction

based on corrections and enlargements of the Elnstein
theory

adding higher-order curvature invariants (R>, R, R*, R R RLIR..)
and miwimaLLg or wow—miwimaLLg coupled scalar fields into dy namtes ($*R) which
come out from the effective action of quantum gravity S

—>’

. capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)
. Nojiri, S.B. Odintsov, Phys. Rep. 505, 59 (2011)
. capozziello, M. De Laurentis, V. Faraoni:, TOA). 2, 874 (2009).

hnhbh
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€ Extended Theories of Gravity %’ %

Q°
Let us start with a general class of higher-order scalar-tensor theories in four
dimensions given by the action Q°

(1)

A= ]d“x,/_—g [F(R, OR,C2R, .CFR, ¢) — gg“"qs;p,qs;,, +£m] @

In the wetric approach, the field equations are obtained by varying with respect to g,

1 1
GHv — 9 I:KTuv + zguv(F 9R) 1 (guk Vo uv )\0)9’ e
1 & oF 9F
;w Aa uk Vo D} " ‘ uv AC D} lR D—j
e e () e ()
0% |
‘0

where g = Z (BDJR)

The di-(:fercwtmL equations are of order (2R + 4).

, 1
The stress—energy tensor Ls Ty = T;l’:}) [¢ w Py — 5q[)"‘ ¢:a:|

M. De Laurentis, MPLA 12, 1550069, (2015)

S. capozziello, M. De Laurentis, V. Faraont, TOAJ. 2, 74 (2009).
S. capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)



2 Extended Theories of Gravity

From the general actiow it is possible to obtain an interesting case by choosing

F=F()R-V(), e = -1

. 1
In this case, we @Ct S = f\/__g |:F(¢)R + Eg‘uv(]ﬁ;pﬁb;v . V(¢)]
The variation with respect to g, gives the second-order field equations

1 1
F($)Guw=F(9) [R,w - ER’“’] =T, — g F(@®) + @)

The energy-momentum tensor relative to the scalar field is
|
va = Q;uPv — Eguv‘p;a‘P;a + g V(¢)

The variation with respect to @ provides the Klein—cGordon equation, iL.e. the field

equation for the scalar field: ve
Ted — RFy($) + Vp(9) =0

This last equatiow is equivalent to the Bianchi contracted Ldentity




Extended Theories of Gravity

The simplest extension of GR is achieved assuming F = { (R), € = 0, inthe action

The standard Hilbert—Blnstein action is recovered for f (R) = R

varying with respect to 9,, , we get

(R)
f,(R)R/,Lv — ngpw = Vy,vvf,(R) — g,u,vaI(R)
and, after some manipulations Gy = 0 {V,Nuf'(R) — e (R)+ 8o Lf(R) —fo(R)R] }

where the gravitational contribution due to higher-order terms can be retnterpreted as
a stress-energy tensor contribution

cownstdering also the standaro perfect-fluid matter contribution, we have

L1 KTyg) oy T
Gug = — R—R’R+’R,_ D’R—}— _ plcurv o
af f/(R)[Zgﬂtﬁ[f( ) f( )] f( ),aﬂ gaﬂ f( ) f,(R) Taﬁ + f’(R)
Ls an effective stress-energy
In the case of GR, identically vanishes while the tensor constructed by the
& standard, minimal coupling is recovered for the extra curvature terme

matter contribution



Several alternative proposals!
s there a unification scheme to oLassLﬁj
alternative theorites?



R

The Lovelock theorema

n four space-time dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric g and its derivatives up to second
differential order, and preserving diffeomorphism invariance, Ls the Einstein
tensor plus a cosmological term

(n other words, some theortes can be reduced to GR, other wot. To this aim,
a useful tool is given by the conformal transformations that we will discuss below



&

Extra fields Diff-invar. violations

Dynamical fields
(SEP violations)

‘Nondynamical ﬁeldsI ‘ Massive gravity I ‘ Lorentz-violations I

Palatini dRGT theory Einstein-Aether
Eddington-Bof(rr'?-)lnfeld Massive bimetric Horava-Lifshitz
gravity n-DBI

: | Scalars | | Tensors |
000 .‘z

Dt Scalar-tensor, Metric f(R) Einstein-Aether TeVeS
Homdeski, galileons  Horava-Lifshitz Bimetric gravity
Quadratic gravity, n-DBI

o0
Q° Berti et al, arxiv:1501.07274 [gr-gcl (2025)



conformal transformations
o%
o% «°
Q°
Let us now introduce conformal transformations to show that any higher-order or
scalar-tensor theory, in absence of ordinary matter, e.g. a perfect fluid, is conformally

equivalent to an Einstein theory plus miwimaua coupled scalar fields

n general, we have that, if M is a (n +1)- dimesional manifold
and g, Ls a metric that is assigned to it, we can generate a new
metric

~ 2w
g,LLI/ — € g,LLI/
o0
‘0

This transformation s called to conformal, stnce,
Lt maintains unchanged the angles and the
relations between modules of the vectors

0



0% ,
A conformal transformations
Q°
n general, tensorial gquantities are not invariant under conformal transformations,
weither are the tensorial equations deseribing geometry and physics

n fact, the Christoffel sywmbols are

~ Ow Ow Ow
(){p, - F()T\,u, + gua (wguu + @ghu — @g)\p)

the RLicel temsor

~

Raﬁ — Raﬁ _ Zw;a;ﬁ + 2w;aw;ﬁ - ga'(gljw — 29a[3www”

The Ricei scalar R = e ¢ (R — 600w — 6w.yw)

Dt ég’w? = Csys



‘__8\ conformal transformations "

Performing the conformal transformation in (=) field equations we get

~

o1 |1
Py |2

1 )
Sop [f(R) - Rf/(R)] + f,(R);qu - gotﬁDf,(R)l +2 (w;a;ﬂ + gaﬂl:la) — W,qw,g + Egdﬁw;yw,y)
we cawn thew choose the conformal factor to be  ,, — 1 In|f'(R)|
2

Rescaling w in such a way that R = w, and k =V 1/6, we obtain the Lagrangian
equivalence

V=gl (R =-F (—11% +

25 Y

~ 1 .
and the Binstein equations tn standard form  Ggg = d.ad.p — Egaﬂ(b;y(b’y + 208V (9)

with the potential sk ’
’ 1 f(R)— Rf'(R
Vig) = - [P(¢)—N(e2k¢)e2k¢]=_f( )= RI'(R)
? 2 F® ¥
Here N is the inverse function of P (@) and  P($) = [ exp(2kp)dN ﬂ

However, the problem is completely solved Lf P (p) can be awaLgthaLng Lnverte

n summary, a fourth-order theory is conformally equivalent to the standard second-
order Binstein theory plus a scalar field



Conformal transformations

0%
{° o%
Q°

This procedure can be extended to more general theories. If the theory is assumed
to be higher thaw fourth order, we may have Lagrangian densities of the form

000
o

L ]
£=L(R,0OR,...,0'R

For example a theory like

£ = RUR,

Ls a sixth-order theory and the above approach can be pursued by considering a
conformal factor of the form

oL 4O oL
dR dLIR

] 1
« @w=—1In
o0 2




Conformal transformations

n general, increasing two orders of derivation in the field equations (i.e., for every
terme L1 R), corvesponds to adding a scalar field in the conformally transformed

frame

A sixth-order theory cawn be reduced to an Elnsteln theory with two miwim&tLLg
cowpled scalar fields; a 2n-oroer theory can be, in principle, reduced to an Einstein
theory plus (n—1)-scalar fields

S. Gottlober, H-) Schwmidt, and A A Starobinsky, Class. uantum Grav. 7, 93 (1990)

Conformal transformations work at three levels: %
’ ’ ’ .."
(L) own the Lagrangian of the given theory; &
(it) on the field equations; os,
(L) on the solutions. ‘.
0

They allow to classify gravitational degrees of freedom and reduce a..
any higher-order theory to Binstein plus scalar fielo



The Palatint formalism ol «’

The Palatini formalism (wmetric-affine formulation) comes out in the case in
which g and ™ are two independent object . Equivalence Principle could not hold any wmore

Let usconsider an f(ﬁ):> eﬂ_ = j{(g, I = gaﬂeﬂalg(F)

0%
The field equations derived with the Palatini variational principle are °
0
f(R) ot
f/(fﬂ)ﬁ(,uu)(r) — Tg/,w — T/inl})» Q

S.capozziello, M.F.Pe Laurentis, L.Fatibene, M.Ferraris,

V£ [ ’_—gf’(ﬁ)g“”] — 0’ S.qarruto arXiv 1509.08008 (2015)

S. capozziello, M. De Laurentis, M. Francaviglia, S.
Mercadante: Foundations of Ph 5s£cs 39, 1161 (2009)

Ls a symmetric tensor density of weight 1, which naturally leads to the introduction of a new
wmetrie h,, conformally related to g,

JoEF (R g = VTR

With this definition I %, is the Levi-Civita connection of the metric h
that the conformal factor relating g, and h,,, be non-degenerate

o with the only restriction

n the case of the Hilbert—Blnstein Lagrangian itis f(R) = 1



The Palatint formalism «
Theeanformal transformation gy —> My =f'($)guv bmplies Ry (I7) = Ry (h)
It is useful to constder the trace of the field equation oo
Q°
fl(RR —2f(R) = g1y =T™

we refer to this scalar equation as the structural equation of space-time

n vacuo and in the presence of conformally invariant matter with T = o, this
scalar equation adwmits constant solutions

In these cases, Palatini f (R)-gravity reduces to R with a cosmological constant

In the case of interaction with matter fields, the structural equation, if explicitly
solvable, provides i principle an expression R = F (T ™)) and, as a result,
both f (R) and £ (R) can be expressed in terms of T (™.

This fact allows one to express, at Least formally, R in terms of
T ), which has deep consequences for the description of physical systems 6™ .

Matter rules the bi-metric structure of space-time and, consequently, both the geodesic
and wmetric structures which are intrinsieally different

000
/) Q°
‘O



The Palatini formalism to non-minimally

, - _% -
cou.pLeol scalar-tensor theories = 1>

The scalar-tensor action can be generalized as
eg g" m) g
Si= [ d*xJ/—g F(¢)ﬁ—5vu¢v¢—v(¢)+£ v, VY

The field equations for the ( 1 ) @
’ F Riuv) — — RI=T 7+ T 7,
metrie Dy and the (9) (pv) 5 Suv Pt b

; a )
connection I v are VOI!“ [J—_gF(¢)g“‘] =0,

€p = Vy(P) + Fy(9) R,
The equation of motion of the matter fields is By

SLm
= 0.
’ ’ ’ ’ 8w
the structural equation of space-time Lmplies that
@) (m) ,
R = — (T +T ) where we must require that ¥ () >0
F(¢)

The bi-metric structure of space-time is thus defined by the ansatz

vV —8 F(¢)g#v = W —h h#v so that h;w = F(¢)g;w ...
Q°

t follows that in vacuo T @ = 0 and T ) = 0 this theory is equivalent to vacuum GrR

f F(@) = F, = const. we recover GR with a miwlmaLLg coupled scalar fielo

2 .



Equivalence between scalar-tensor and wetric f (R)-gravity
(a vealization of Lovelock approach)

(n , we tntroduce the scalar ¢ = R; thew the action

S = 2l/d“x./—gf(fz) +sm™
K

Ls rewritten tn the form coincides with if ¢ = R.

1
S= f de/=E [V (@R — V()] + 5™ 2
K
when f 7 (R) =0, where ¥ = f'(), V(p) = ¢f ' (9) — f(9) P
€
Vice-versa, Let us vary the action with respect to @, which Lleads to R % ~ i =R-¢)f"(R) =0.
The action has the Brans-Dicke form <
_ 1 @ (m)
& 5= [ dxTE[yR- SV yT —uw)] +5

&

with Brans-bicke field @, Brans—Dicke parameter w = 0, and potential U(P) = V [@ ()]

An w = 0 Brans-bicke theory was originally studied for the purpose of obtaining a Yukawa

correction to the Newtonian potential in the weak-field limit and called " or
44 44 ..’
- P{J K 1 1
.. , , « G[ll’ = JTLT) - ﬁ U(w)g;w + J ( uvvllf - gquW)
The variation of the action Yields the field

, du
equations " 30 +2U(Y) — ¢ E — T



Equiva Lence between scalar-tensor and Palatint f (R)-9 m\/ita
The Palatint action

S = %fﬁ@f@) + s
K

&

Ls equivalent to 1 . ) 0
s=§/dw—g [F OO+ G0 R — )] +5™ &

It is straightforward to see that the variation of this action with respect to x yields x = =
we can now use the field @ = £‘(x) and the fact that the curvature R is the (metric) Ricel
curvature of the new metric huv = £ “(R) g,,, conformally related to g,

Using now the well known transformation property of the Ricei scalar under conformal
rescalings

3 3
R=R+—VV,¢p — O
+ 2% ¢Vad — SO0
and discarding a boundary term, the action can be presented in the form

S = iK / d'xy—g [¢R b VGV V<¢)] +5m,

2 26
where V($) = ¢x(4) —f [x(¢)] %
This actiow is clearly that of a Brans-bicke theory with Brans-bicke parameter w = —3/2 and

a potethaL

o0 0
o o0
Iy 9 Q°

Q°



The interpretation of conformal frames

The conformal transformation from the Jordawn to the Elnsteln frame Ls a
wmathematical map which allows one to study several aspects any Extended
Theories of Gravity

having now available both the Jordan and the Elnsteln conformal frames, one
wonders whether the two frames are also physically equivalent or only
wmathematically related

the problem is whether the physical meaning of the theory is “preserved” or not by the
use of conformal transformations

owne has now the metric

9,., and tts conformal cousin g,

and the guestion has been posed of which one Ls the ”, L.e., the metric
from which curvature, geometry, and physical effects should be caleulated ano
compared with experiment



>
The interpretation of conformal frames 6()
L

The question of Jordan frame and Elnsteln frame can be summarized according to the
fact that

- geowetry can be modified (left hand side of Einstein equations) L.e. the jordan
frame or

- the source can be modified preserving the Einstein tensor (right hand side Einstein
equations), i.e. the Elnstein frame.

This means that matter remains minimally coupled in the Jordan frame while it is non-
minimally coupled (n the Elnstein frame

From a genuine physical point of view the jordan frame is the physical frame,
since matter traces the geodesic structure

EoS <«  Lgr <~ Lk
o"g ¢ ¢ ¢
Einstein eqs. «—> STeqs. <—> f(R) eqs.
e ¢ ¢ ¢

< E frame sol. <—>  Eframe sol. +¢ <—> ] frame sol.




AppLicatiows to astroph 5s£os

v Ave needed to probe Extended Theories of Gravity
v’ could be a signature at IR-scales

v’ could address phenomena out of GR

v’ Could probe Park Matter and Dark Energy effects




Some exact Black hole solutions

Let us constder an ana Lgtic function f(R), the variational principle for this action is

6 / d*x/=g[f(R) + XL,] = 0,

BY varying with respect to the metric, we obtain the field equations

H,u,v = ff(R)R;w - %f(R)g,uv - f’(R);;w + gy Of'(R) = XTy,v
H =g "Hy), =3Uf(R)+ f'(R)R-2f(R) =T,

The wmost general spherically symmetric solution ca be written as follows:

ds? = m (¢, r)At? + ma(d, Py dr? + ma(t', r) dt’ dr’ + ma(t', ) A,

we can consider a coordinate transformation that maps metric tn a new one where the

off-diagonal term vanishes and m, (t" , v ) = =3 that is,

ds? = g, (¢, r)dr? — g,, (¢, r)dr? — r2dQ. Q



Spherical sy mwmeetrie solution

...y inserting this metric into the field f'(R)R,, — %f (R)guy + Huy = XT),
equations , one obtains

f'(R)R=2f(R)+H = AT,

~
o

...where the two quantities H,, and H read

Huw = =" (R Ry — T, Ry = T Ry — g (8" + 8" (In/=2) 1) R,
+ (8rr,r +¢"(In \/__g),r)R,r +8" Ry + grrR,rr]}
—f"(R)[R R, — gu(g" R +8"R,)]

H=2g""MHer =3f"(R)[(¢",+&"(Iny=2))R;+ (¢, +&" (Iny/=9) )R,
+8"Ru+8" R, ]+3f"(R)["R;*+¢" R,

After some caleulations we can find out general solutions for the field equations giving the

dependence of the Ricel scalar ow the radial coordinate r

1 )
ds® = (oz+,8r)dt2 — —Ldr“ — r2dQ

2a+ Br
The same procedure can be worked out with Noether sy mmeetries approach.

M. De Laurentis, M. Paolella, S. Capozziello, PRD 91, 083521 (2015)

M. De Laurentis, L. Sebastiant, submitted to PRD (2015)
S. capozziello, M. Pe Laurentis, A. Stabile, Class. Quantum Grav. 2F, 165008, (2010)



y ' - -
H g’ =1"n" +1"n* — m*m" — m"m*

M. De Laurentis, R. glambd submitted to crg (2015)

, 1 m —
= g 0+ 5l
The new metric i

( r(a+’671)+a2’8 - 0 0 a(—Qa‘r—2,622+\/2,823/2) sin” 6 \

; ‘ 2%

_ Bx? 0 ;

| 2ar T Bla? T P17

g;u/ — ' | _22 0

N2 _ QQ(ar+/322_\E/2—323/2)811129] Sin? . /

S. Capozziellp, M. De Laurentis, A. Stabile, Class. Quantum Grav. 27, 165008, (2010)
M. De Lam%cls, EP)C 71, 1675, (2011)



DYy namics of a partLoLe around a black hole

Standard Hamiltonian formalism for geodesic motion

i i\ 2 i Y2
The Hamdiltontan reads: H— —p — pig’ N pig’ B m*+ pip;g”
= ~P0= 00 00 00
8 8 8
, , , dx'  0H dp;  0H
with the equations of motion = anod — = ——
dr opi dr ox'

Solution of Hamilton's equations that gives the orbits,

the hortzon and

Specifies the tnitial value of the vector
L the phase space: position and
momenta

o| —r(g)

. : External Horizon
0 : Internal Horizon
E Static limit

Free evolution and use of Carter’s
constant as a check of the
accuracy of the numerical integration

comparing orbits with GR (Kerr solution)

M. De Laurentis et al. tn prepamtiow

F. Tamburint, M. De Laurentis, R. Kerr accepteol I PRL (R015Ve  w &  »  w o 1
M. De Laurentis, S. capozziello, Nova publisher ISBN: 978-1-61942-929-1 (2012)



aw emission from a black holes

Owne would need to use a consistent perturbation treatment: time-domain solution of
modified Zerilli-Regge-Wheeler equation

L , Instantaneous angular momentum loss
M. De Laurentis, n preparation (2015) | | ‘ ‘ ‘ ‘ ‘

M. De Laurentis, A. Spallicel subwmitted to CRg (2015) .

0.2

@

Use the multipole expansion of

gravitational radiation to gain an
Ldea about the general qualitative
features of the qws

dE*/dtn®

C.W—Lumiwosi’cg

Precursor + burst structure of waveforms
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« H*galrostati.c equilibrivm and Stellar structures

Fielo equations at © (2)-order, that Ls at the RQ)
Newtonian level, are R? — - 1(0) A R® = XTV

P(R) =P (RE+0(4)) = (0) +P+ (0)R@ + ... =37"(0) A R® — R® = XTV),

we recall that the energy-momentum tensor for a

perfect fluid is B
T,uz/ — (E T p)u,uMV — P8

-

Being the pressure contribution negligible in the field equations in the Newtonian
approximation, we have (2)

R
JANK() +T + f//(()) ARQ) — _Xp

modified Polsson equation
fi 1 3£7(0) A R? + R? = — Xp,
S. capozziello, M. De Laurentis Ann. Ph Ys. 524, 545 (2012)
For f7(R) = o0 we have the standard Poisson equation. AD = —47Gp
4 [ 4 ap 1 ('9 lngrr
From the Blanchi tdentity we have THY = () — =——(p+e
e dx* 2 axk

(. De Martino M. De Laurentis, F. Atrio-Barandela, S. Capozziello, MNRAS 442, 921 (2014).



Hgdros’catio equilibrium

Let us suppose that matter still
satisfies a polytropic equation p = K YpY

we obtain an integro-differential equation for the gravitational potential , that Ls

2, /¢
d w(’z) + gdw(z) + w(z)n _ m&o 1 / ’ ds' 5 {€—m§O|z—z’| . €—7n£o|z+z’| } ’U)(Z/)n
0

dz? 2 dz 8 =z
lDl‘WQvg'l""l""l""I""l
, ’ ’ ’ L Sy ".‘. .
Lané-Emden equation tn f(R) -gravity | \\ ..,\
, 08 \ '
we find the radial profiles of the - \’ Yy,
’ I'd ’ ’ i ¥ ~\\\
gravitational potential by solving for some | % N,
;. 06F A .
values of n (polytropic index) | “.K‘ N
g | X
04 i “::,\\‘\\ .\\:\\
, , i AR\ ~"
New solutions are physically relevant and : AN Y
could explain exotic systems out of Main 02} NN Y,
’ .“ LAY
Sequence (magwetars, variable stars). ; ‘\\\\ L .
e
4° ;

R. Farinelll, M. De Laurentis, S. Capozziello, S.B. Odintsov, MNRAS 440, 3, 2894. (2014)
S. capozziello, M. De Laurentis, A. Stabile, S.B. Odintsov, PRD €3, 064004, (2011)



Self gravitating systems

Field equations tn f(R) —gmvi’cg glve rise to the Modified Polsson equations.
we know that

2
lvzgoo %Vzgfl)

Also we well kinowwn that R(2) ~ v2(q) _ \If)

v\ @ is the further gravitational potential related to
the metric component g @

...and thew the field equations assume this form

V2D + V20 — 2f7(0)VAD + 2£"(0)VAF = 2 X p

p— k ‘.',__ — y —

V2D — V2 + 3F(0) V4D — 3£7(0)VAW = — Xp.

S. capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)



Jeans instability in f(R)-gravity

0
.4= o

‘0

pynamics and collapse of collisionless self-gravitating systems is described by the
coupled collisionless Boltzmann and Poisson equations

—i0f1 + V- (17\:f1> <I/\(D1) ){0 0,

—/\'2((1)1 +'¥) —20(/\'4((131 —Y¥,) = 161G /fl(]\_:

(D) — W) — 30kt (D) — ¥)) = 8nG /fldv.

combining the above equations we obtain a relation
between @, and Y,

B 3 — dak?
1 — dak?®

A olispersiow equation is achieved for neutral dust-

particle systems where a generalized jeans wave

number Ls obtatned

4 k2 4k“
R ( = )[1 — Jrxe” (1 —erf[x])] =

J J

S. capozziello, M. De Laurentis, I. De Martino, M. Formisano, S.B. Odintsov PRD 85, 044022, (2011)

Plot of dispersion function
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The Jeans mass Limit in

we have also compared the be avior with the

tewperature of the Jeans mgss for various types of

tnterstellar meolecular clowds

n our model the Lmit (in wunit of mass) to
start the collapse/of an tnterstellar clowd is
Lower thaw the glassical one advantaging
the structure formation.

M. De Laurentis,

(R)-gravity

M/ [Mo]
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. capozziello, Nova publisher ISBN: 978-1-61942-929-1 (2012)
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Massive and massless modes

we have Llinearized the field equations for higher order theories that contain scalar tnvariants
other thaw the Ricel scalar P =R,R®,

S = /d4x\/—_gf(R. P, Q) Whﬁt@/ Q = RabcdRade

1 ‘ .
FGuu = 59uv (f—RF)-— (guvm - vuvy)F

varying with respect to the meetric, one gets the field equations = _ ‘
g9 P 0 field eq —2 (fpR% Ray + fo Rapeu RS

’ , , - /T Tb 'P.Rab' — D PR J
To find the vartous gW wmodes, we need to Linearize gurVaVo(J ) (P Ruw)

’, , , ¢ ? ? o ‘b i o b
gravity around a Minkowski background: +2V,Vy (fP R%,0° +2fq R, )
Juv = Nuv + h;u/
b =Py + 0D

. 9 (5 (I) b}

pr — (77#_1/]\7 — l;‘u‘kv)F— + (‘Ihu/lf_ - l\)#l\’y)hf
0

—
—

Perturbing the field equations, ... we get 1 (l,g 4 fpo+ J:fQo>
2 v U

ko \/
’ d d 4 l
The equation for the perturbations ts {2 | f By =0
M spin2 he = _®
- - f Fo
0 2 — Fy
Mgpin2 = fro+4faoo
we have a wmodified dispersion relation which corresponds to
a massless spin-2 field (R*=0) and massive 2-spin ghost
moole % e o,
k p— 0 f— —m .
1 fpPo+2f0o spin?2

S. capozziello, G. Basini, M. De Laurentis, Bur. Phys. ). C #1, 1679 (2011)
S.capozziello, C. Corda, M. De Laurentis: PLB 669, 255 (2008)



Massive and massless modes

pLawe waves
th — mghf Massive mode hf = a(f) - exp(1¢“xq) + cc
A
For R*=0 mode I a massless spin-2 field with two inoependent

poLar'Lzatiows plus a scalar mode

a massive spin-2 ghost mode andl there are five Lndepenoent
For R? =0 wode |_> , ,
polarization tensors plus a scalar mode

n the z direction, a gauge in which only A ,, A, and A, = A, are different to zero can be
chosen. The condition h = 0 gives A, = —A__.

n this frame we may take the bases of polarizations defined in this way

' 1 C (000
: 1 00 1 010 1
L [0 210 o(X) — (9) — Y0 G
e = 0 10 J=—|100 e)=—(000
l ﬂ(” 0 0) - f(ooo V21001

...the characteristie ampLLtuole

hu(t,z) = AT(t — 2)e ﬁ,: + A% (t — 2)e Eff, + hs(t —vaz)e,,

two standard polarizations of qw arise from GrR the massive field arising
from the generic high-order theory



Classification of gravitational modes

When the spin-2 field Ls massive, we have six polarizations defined by

L, (1 00 L (010
) =—=10-10]. ) =—1(100
‘ /5 ) - uu /5 -
vZlo o0 0 v2\o000
, (001 L (000
(B I, (C o
) = sl 000]). (C) = —= (001
vVaN100 V2 o1 o0
/2 Loo L (000
(D) _ V= n 1 (s) _ NN 0
(D) = |03 0 els) = —=| 000
N0 0 —1 v2\oo01

and the amplitude in terms of the & poLa rization states as
/ + B B
h,uu( ;) - -1+(f — UG ) iw) T 4 (f — UGy ) #1/ +B (f — UGg *) iuj)

—1-(_-' (f — g, [ 7)€ ﬁ“"

Ls the group velocity of the massive
spin-2 field and is given by “s2 T

DD( .- :)((D) —J[- l]s(f - I'G"‘“)(’:‘#Ij'

v

K. Bamba, S. Capozziello M. De Laurentis, S. NoJ'LrL, D. Saez-Gowmez PLB F2F, 194 (2013)

M. De Laurentis, S. Capozziello, §. Basint MPLA A 24, 0217 (2012)
C. Bogdawnos, S.Capozziello, M. De Laurentis, S. Nesseris, Astrpart. Phys. 34 (=o10) 226



classification of gravitational modes

The fact that & polarization states emerge is in agreement with the possible allowed
polarizations of spin-2 fielo
H. van Pam and M. ). G. Veltman, Nucl. Phgs. B 2,297 (1970).

n fact the spin degenerations Ls

d=(2s+1) wy=0 EEEEP s=2d=5
d = 2s my =0 NN <=1,0=2

ad= (2s+1) M, = O s=0,d=1

Aw interesting fact is this result is perfectly in agreement with the fundamental
Riemanwn theorem stating that in a N —dimensional space,

Z=N(N— 1)/2

gravitational degrees of freedom are allowed.




Detector réesponse to
stochastie

background of gws

M2JINVIRGD

L I<GGO

We have investigated the possible detectability of such additional polarization wodes of a stochastic

gravitational wave by ground-based and space tnterferometric detectors.

1 F T T T T T T ]
¢
Q
8
Plots of angular pattern 3
f —
functions of a detector for each ook N\
polarization. _ Lo =
0 [ wodes are T
3 - represented by red, green, and blue |
XN - ourves, respectively -
(N3
é 0.01 L ! L I L |
) 0 0.5 1 1.5 2 2.5 3
z

Orientation a noles
[radl

we found that these massive modes are
certainly of interest
for direct detection by the ViIRGo-LIGO,

it T LISA experiments.
S. capozziello, R. Clanct, M. Pe Laurentis, S. Vignolo, EP)C 70, 341-349, (2010)

S. Bellucel, S. capozziello, M. De Laurentis, V. Faraoni, Phys. Rev. D 79, 104004 (2009)

S.capozziello, C. Corda, M. De Laurentis, MPLA 22, 264F, (2007); MPLA 15, 1097, (2007

DLspLaaemew’c tnduced bg
each wmode own a sphere of
test particles




uadrupolar gravitational radiation in f(R)-gravity

we caleulate the Minkowskian Limit for a class of analytic f(R)-Lagrangian

f(R) = an( (R—Ro)" ~ fo +foR+16'R2

n! 2
n

Field equations at the first order of approximation in term of the perturbation
become:

R(l) 1| p(1 v (1) (0)
fO ,U\ _—’7;11 {R;n o ’7;1\'DR } _ET[U

The explictt expresstons of the Ricel tensor (1) _ Lo 1 1
and scalar, at the first order in the metric
perturbation, read R = e — U

M. De Laurentis, I. De Martinoe JGMMP 12, 1550004 (2014)
M. De Laurentis, . De Martinoe MNRAS 431, 741 (2013)
M. De Laurentis, S. capozziello, Astrop. Ph Ys. 35, 5, 257 (2o11)



uadrupolar gravitational radiation in f(R)-gravity

Assuming that the source is Localized tn a finite region, as a consequence,
outside this region

s L= by RO =0h,, =0

the energy momentum tensor of gravitational field in f (R) gravity

OR 1 OR OR OR
té == ! — a (\/_ )] o'a+ - o Oé} - /,R - o, _52
f { [agpa,)\ V=9 ¢ gagpo,)\§ Jeo, agpo,)\f e f * 8gp0,)\§ Jeo, f

the energy momentum tensor consists of a sum of a GR contribution plus a term coming from f (R) gravity:

A A k
ta — f(;[oz|G +f”

0"l fr)
which twn terms of " po 2 v 1 po
the perturbation h i G~ ol +10 {(hpa - 0h) [h —hy —+50, (55 - Dh)]

PO o

—h7 W 4 WOy, + hEOh, — Dh-*h,x}.

the energy momentum tensor assumes the

following form: ey fo k'k, ( PIh ,,(,) - % % (Icp kJi”") ’

>y
" -~

CR f(R)

>y




Radiated Energy

In order to caleulate the radiated energy of a QW source suppose that h,, can be represented by a
discrete spectral representation.

The tnstantaneous flux of energy is given by @ — 12dOx\tO
dt

Defining the following momenta M(t) ~ /d3>_<’TOO()_<', t),
of the mass-energy distribution: '

D¥(t) ~ / dXXTO (X, ),
Qi(t) ~ / FXXNTO (X, 1).

and awaLgsiwg the radiation b~ 7 T 2O

terms of multipoles, found (th) = <f(’)k’~'ko<;i2 [(}?j&jQij) —2 (2ink) <5<J.Qij) 4 (Qij Qu>]

the total average flux of energy due to the tenwsor wave

1E G [ ., [eijes [ ’Prec’useLg, dE G /™.
<((7>_@<f0 (Q]Qij>/_\0 (Q JQij>J> for-f”0=oawd ‘ <E> :E<QUQU>
N ~~ ~

GR f(R) to=4/2 P

(total)



Application to the bina ry systems

our goal is to use a sample of binary pulsar systems to fix bounds on f (R) parameters.

We assume that the motion is Keplerian and the orbit Ls i the (x, y) plane

the quadrupole matrix is g _ )2 (

, 1/2 )
whit = (Gn:c) (1 _62)—3/~(1 +ecos )’

a’

the time derivatives of the quadrupole:

"Qll = H, sin 2y (€ cos ¥ + 1)*(3€ cos ¥ + 4)

0y = —H1(8cos ¥ + €(3cos 2y + 5))
x sin /(€ cos ¥ + 1)?,
0, = —H,(ecosy + 1)
X (5€ cos ¥ + 3e cos 3y + 8 cos 2)
011 = H, [15€% cos 4 + 50€ cos 3y

+ (1262 + 32) cos 2y + 6€ cos Y — 362]

cos”

sin Y cos

sin Y cos ¥

sin® ¥ ) y

05, = —H, [15€¢* cos 4y + 50e cos 3y

+ (24€? + 32) cos 29 + 1de cos Y — 7€’]

01, = 2H,siny [1562 cos 3y + 50€ cos 2y

+ (3362 + 32) cosyr + 306] ,

where ) G me m,

Hi

b

T5/3 (1 _ 62)5/2 m

o 22/37m8/3 G2/3’71c mp (E CcoS Eb + 1)7’
5 .

T8/3 (62 — 1)4 NI



Application to the bina ry systems

we can perform the timee

average of the — <d_E> _ l/TdtdE(w) _ 1 /27r df” dE()
radiated power by writing dt T J dt TJo v dt

and finally, we get the first time derivative of the orbital period:

Tb =

3/ T\ 7 uG5(me + myp)*?
20\ 27 I 62)7/2

fi)”"tz T—I

x | £/ (37€* + 292¢* + 96) —
[f"( ) 21 + €2)°

x (891€® +28016€° + 82736€* + 43 520€* + 3072)

we will go on to constrain the £ (R) theories estimating £, from the comparison
between the theoretical predictions of dT, and the observed one.

M. De Laurentis, I. De Martinoe JGMMP 12, 1550004 (2014)
M. De Laurentis, . De Martine MNRAS 431, 741 (2013)
M. De Laurentls, R. De Rosa, F. qarufi and L. Milano, Mown. Not. R. Astron. Soc. 424, 2371 (2012)



Application to the binary systems: The PSR 1913 + 16 case

Let us now use the published numerical
values for the specific example of PSR

1912 + 16 to nuwmerically evaluate the
above equations

PSR 1913 + 16 Chacteristic features

Pulsar mass m=1.39M,,
Companion mass M =1.44M,,
Inclination angle sini = 0.81

Orbit semimajor axis a=8.67 x 10'°cm
Eccentricity €=0.617155

G=6.67 x 10" dyn cm? g2
=299 x 10" cms!

Gravitational constant
Speed of light

5 (> ! ! ' I I ‘ ' orbital decaa rate for PSR
4 l 1912 + 16 in f(R)-gravity.
34 - upper Limit set by Taylor et al.
°F tn dashed line. gR Limit
3+ ’ ’
5 gl 2.36X 10 un dotted Line
° Ll and the Lower Limit set by
15l ) Taylor et al. tn dashdot Line.
.l = JTR) ] while in solid Line is plotteot
Sl AT
%3 28 26 24 22 18 16 14 12 1

R.A. Hulse, ).M. Taylor Ap) Lett. 195 L5L (1975)
J.H. Taylor, L.A. Flower, P.M. Mc Culloch Nature 277 437 (1979) ;

J-H. Taylor, ).M. weisberg, Astrophys ). 252, 908 (1982)

x10°

A class of f(R) agrees with data!



AppLioatLow to the bina ry systems: PPK parameters
for PSR JOF=7#-2039

. 2\ >3 Gjéa(m] + 'n12)2/3 (QA.F’PN 1)
“=\B (1 —e?) ’

1 my (28PN — 1) G2 + ma(287FN — 1) G2 1]

+ 351
PPN _ f(R)? 2 G:'iB('ml + ma) 20
’W - R
R fr(R) +2f"(R)?’ o\~ 1/3
27 mo Gapma
Yy=e€| = ———x | Goo + ——+ knx | x
SPPN 1 F(R)f"(R) d~EPN P, my + my my + mo
R T 4A2f(R)2+3f"(R)?2 dR G ? (my +mo)??
X — = \
o2

Dependence of the companion mass upon
the pulsar Colors indicate:

curve w(m,,m,) is blue, curve y(m, m,) is
browwn, curve P, (m,,m,) Ls red, curve s
(my,m,) is plnk, curve r(m , m,,) is green,
curve R(m, ,m,) is black.

Goo
=43 — (1 +Co)) ma,

( ’r) c:r(ml +mo) 2/3

B

43 m2
In GR we have the
following masses for PSR JOF3F-2039
mp1 = 1.3381,
Mpo = 1.2489.

n f(R ) we obtain
mp1 = 1.3331,
mpa = 1.2429.

M. De Laurentls, . De Martlno, P. Frelre Lin prepamtiow



Modified TOV equations in f(R) gmvitg

the equations for a spherically symmetric and statie perfect fluid also in f(R)
gravity

"(R) d 5
L O

r2  dr N and
8 1 , ,,
0 | CIF (BB~ f(R) P fo, e 1 o) -
, dr 7
. 2 d\\ df'(R) d°f'(R) ‘
2A 2 — 8mp 1 o (2 do\ df'(R
e [(7 dr) dr + dr? ;p - 5 [f'(R)R — f(R)] + e (; + f) fd.(r )

we need a further equations to solve the above system and then we constder also the
trace equation in the following form.:

30f'(R) + f'(R)R — 2f(R) = —87(p — 3p)

r dr dr

. 02 2 do d\N\ O 02
remembering that 23] — _o(2A—2¢) ~ '
J ‘ ‘ ot? i ( ) or i or?

which for f(R) = R is reduced to the equatitgj R =gn(p-=p)




The case of f(R)= R + Re logr

®:
e: e:
. ®:
, ®: .
Let wus constder a & D
corvrectlon to the Hilbert-
Binstein action given by f(R) = Rl+e

It is easy to show that R*¢ = R-R¢~ R(1+ (log R)e + O(?))

~ R+ eRlogR,

It Ls tnteresting to define the right physical dimensions of the coupling

constant and to control the magwnitude of the corrections with respect to the
standard Binstein gravity

S. capozziello, M. De Laurentis, M. Francaviglia, Astrop. Phys. 29, 125 (2008)

M. De Laurentis, R. De Rosa, F. qarufl and L. Milano, Mow. Not. R. Astron. Soc. 424, 2371 (2012)
T. Clifton, ). B. Barrow, Phys. Rev. B F2 102005 (2005)

T. Clifton, ). B. Barrow, Phys. Rev. B 1, 063006 (2010)
S. capozziello, A. Stabile, A. Troist, Class. Ruantum Grav. 25 025004 (2008)
S. capozziello, M. De Laurentis, A. Stabile Class. Ruantum Grav. 2%, 165008 (2010)



Exawple of solution of the field equations

b | ! L | ! L L B | N L | ! UL |
f(R)=R"'** £=-0.05 EoS FPS

03
pc=1015 ar cm™
< 02t}

04

0.1 -

0 e i

0.4 -

'. 0.01 0.1 1 10 100 1000
...‘ e’ R (km)

S. capozziello, M. Pe Laurentis, R. Farinelll, S.B. Odintsov arXiv: 1509.04163



M-R diagram
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For each BOS the maximal central density is determined by the condition p, - 3p > 0
S. capozziello, M. De Laurentis, R. Farinelll, S.B. Odintsov arXiv: 1509.04163



Conclustons and Perspcotives

v BTGs are a useful approach to IR and WV problems of GR

v Naturally address problems like DE and DM extending the gravitational sector.

v’ However results of GR are easily recovered since Hilbert-Elnstein actiown is just a
particular TG

v\ Awn important challenge is to find out exact solutions for ETGs. This allows to
control mathematics and physices of the theory

v’ The general philosophy is that gravity could wot be the same at any scale anol
GR Ls a good theory only at scales investigated up to now

v’ we are searching for an EXPERIMENTUM CRUCLS to retain definitely such
theortes or rule out them

Black Hole cam project can give hints in this direction.....




Work in progress!i!

Hints are welcome! !




