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Summary 

•   Black hole solutions 

•  Self gravitating systems  

•  Stellar structures 

•  Gravitational waves and massive modes 



What we mean for a ‘‘good theory of gravity’’ 



Requirements 

1. It has to explain the astrophysical observations (e.g. the 
orbits of planets, self-gravitating structures) 

2. it should reproduce Galactic dynamics considering the 
observed baryonic constituents (e.g. luminous components as 
stars, sub-luminous components as planets, 
dust and gas) radiation and Newtonian potential which is, by 
assumption, extrapolated to Galactic scales 
 

3. it should address the problem of large scale structure (e.g. 
clustering of galaxies) and finally cosmological dynamics 



Space and time have to be entangled into a single space–time structure 

The gravitational forces have to be expressed by the curvature of a 
metric tensor field 
                                ds2 = gμνdxμdxν         on a four-dimensional space–time manifold 

Space–time is curved in itself and that its curvature is locally determined by the 
distribution of the sources (according to the former Riemann idea) 

The field equations for a metric tensor gμν, related to a given distribution of 
matter–energy, can be achieved by starting from the Ricci curvature scalar R which is 
an invariant 

The main physical object are the gravitational potentials endowed in metric coefficients 
 (metric formulation) 

On the other hand both Γ and g could be related to the gravitational quantities 
 (metric-affine formulation) 

what is the theory that satisfy these requirements? 

General Relativity 



1.  The ‘‘Principle of Relativity’’, that requires all frames to 
 be good frames for Physics, so that no preferred inertial frame 
should be chosen a priori (if any exist) 

2. The ‘‘Principle of Equivalence’’, that amounts to require inertial effects to be 
locally indistinguishable from gravitational effects (in a sense, the equivalence 
between the inertial and the gravitational mass). 

3. The ‘‘Principle of General Covariance’’, that requires field equations to be 
‘‘generally covariant’’ (today, we would better say to be invariant under the action of 
the group of all space–time diffeomorphisms). 

4. The causality has to be preserved (the ‘‘Principle of 
Causality’’, i.e. that each point of space–time should admit a 
universally valid notion of past, present and future). 

Physical and mathematical assumptions 



5. the space–time structure has to be determined by either one or both of two fields, a 
Lorentzian metric g and a linear connection Γ 

7. The connection Γ  fixes the free-fall, i.e. the locally inertial observers 

6. The metric g fixes the causal structure of space–time (the light cones) as well as 
its metric relations (clocks and rods);  

8. A number of compatibility relations have to be satisfyed:  
 
    i)  photons follow null geodesics of Γ ,  
    ii) Γ and g can be independent, a priori, but constrained, a posteriori, by some 
         physical restrictions (the Equivalence Principle) 

9. Equivalence Principle imposes that  Γ has necessarily to be the 
Levi-Civita connection of g 

10. However if the Equivalence Principle does not holds g and Γ can be independent   



Why extending General Relativity ? 



General Relativity is a theory which dynamically describes space, time and 
matter under the same standard 

The result is a self-consistent scheme which is capable of 
explaining a large number of gravitational 
phenomena, ranging from laboratory up to 
cosmological scales 

§  GR disagrees with an increasingly number of observational data at IR-scales 
 
§  GR is not renormalizable and cannot be quantized at UV-scales 

….it seems then, from ultraviolet up to infrared scales, that GR cannot be the 
definitive theory of Gravitation also if it successfully addresses a wide range of 
phenomena 

General Relativity and its shortcomings 

Despite these good results… 



Several approaches have been proposed in order to recover  
the validity of General Relativity at all scales…  



Theoretical motivations: IR  scale 

Dark Matter (DM) and Dark Energy (DE) are attempts 
in this way 

The price of preserving the simplicity of the Hilbert Lagrangian has been the 
introduction of several odd behaving physical entities which, up to now, have not 
been revealed by any experimental fundamental scales (there are no final probe for 
DM and DE, e.g. at LHC) 

In other words: Astrophysical observations probe the large scale effects of 
missing matter (DM) and the accelerating behavior of the Hubble flow (DE) 
but no final evidence of these ingredients exists, if we want to deal with them 
under the standard of quantum particles or quantum fields 

P. Salucci, M. De Laurentis (2015): Dark matter in Galaxies. Theory, Phenomenology, 
experiments, to appear in The Astronomy and Astrophysics Review (2015) 



Quantum Field theory 

States of system vectors Hilbert space 

Fields operators 

in 

on 

…a quantum mechanics framework is not consistent with gravitation 

…. Fields have to be quantized but  gμν  describes both of  dynamical aspects 
of  gravity and  space-time background! Difficult to quantize!!! 

The most important goal is to obtain an effective theory which 
agrees with the other fundamental interactions at quantum level 

Today, we observe and test the results of some symmetry 
breakings 

The Quantum Gravity Problem: UV scales 

 S. Capozziello, M. De Laurentis, S.D. Odintsov Eur. Phys. J. C (2012) 72:2068 



To quantize the gravitational field, we have to give a quantum mechanical  
description of the space-time 

Quantum Gravity Theory leads to 

GR assumes a classical description of matter which totally fails at 
subatomic scales which are the scales of the Early Universe 

Not avaible up to now! 

 Theoretical motivations: UV scale 

unification of various interactions 



The situation is dark 

Is General Relativity the only fundamental theory 
capable of explaining the gravitational interaction? 



Extended Theories of Gravity 

…alternative theories have been considered in order to attempt, at least, a 
semiclassical cheme where General Relativity and its positive results could be 
recovered… 

the most fruitful approaches has been that of  
Extended Theories of Gravity which  have become a sort of 
                                                      paradigm in the study  
                                                      of gravitational interaction 
 

based on corrections and enlargements of the Einstein 
theory 

adding higher-order curvature invariants  (R 2 , RμνR
μν , RμνγδR

μνγδ, R☐R…)   
and minimally or non-minimally coupled scalar fields into dynamics (ϕ2R) which 
come  out from the effective action of quantum gravity 

Y.F. Cai, S. Capozziello, M. De Laurentis, M. Saridakis, accepted in 
 Report  Progress Physics (2015) 
S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011) 
S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011) 
S. Capozziello, M. De Laurentis, V. Faraoni:, TOAJ. 2, 874 (2009). 
 



Extended Theories of Gravity 

Let us start with a general class of higher-order scalar-tensor theories in four 
dimensions given by the action 

In the metric approach, the field equations are obtained by varying with respect to gμν 

where 

The differential equations  are of order (2k + 4). 

S. Capozziello, M. De Laurentis, V. Faraoni, TOAJ. 2, 874 (2009). 
S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011) 

The stress–energy tensor is 

M. De Laurentis, MPLA 12, 1550069, (2015) 



Extended Theories of Gravity 

 From the  general action it is possible to obtain an interesting case by choosing 
 F = F(ϕ) R-V(ϕ) , ε = -1 

 In this case, we get 

 The variation with respect to gμν gives the second-order field equations 

 The energy-momentum tensor relative to the scalar field is 

 The variation with respect to φ provides the Klein–Gordon equation, i.e. the field 
equation for the scalar field: 

 This last equation is equivalent to the Bianchi contracted identity 



	  The simplest extension of GR is achieved assuming F = f (R),  ε =  0,  in the action 

	  The standard Hilbert–Einstein action is recovered for f (R) = R 

	  Varying with respect to gαβ  , we get 

	  where the gravitational contribution due to higher-order terms can be reinterpreted as  
a stress-energy tensor contribution 

	  	  

	  and, after some manipulations 

Extended Theories of Gravity 

	  Considering also the standard perfect-fluid matter contribution, we have 

	  is an effective stress-energy 
tensor constructed by the 
extra curvature terms 

	  In the case of GR,   identically vanishes while the 
standard, minimal coupling is recovered for the 
matter contribution 



Several alternative proposals! 
Is there a unification scheme to classify 

alternative theories? 



 In four space-time dimensions the only divergence-free symmetric rank-2 
tensor constructed solely from the metric g  and its derivatives up to second 
differential order, and preserving diffeomorphism invariance, is the Einstein  
tensor plus a cosmological term 

In other words, some theories can be reduced to GR, other  not. To this aim,  
a useful tool is given by the conformal transformations that we will discuss below 

 The Lovelock theorem 



E. Berti et al,  arXiv:1501.07274 [gr-qc] (2025)	  



Conformal transformations 

Let us now introduce conformal transformations to show that any higher-order or 
scalar-tensor theory, in absence of ordinary matter, e.g. a perfect fluid, is conformally 
equivalent to an Einstein theory plus minimally coupled scalar fields 

In general, we have that, if M is a (n +1)- dimesional manifold 
and gμν is a metric that is assigned to it, we can generate a new 
metric  

This transformation is called to conformal, since, 
it maintains unchanged the angles and the 
relations between modules of the vectors 



Conformal transformations 

 In general, tensorial quantities are not invariant under conformal transformations, 
neither are the tensorial equations describing geometry and physics 

In fact, the Christoffel symbols are 

 the Ricci tensor 

The Ricci scalar 

The only tensor that is invariant under  conformal transformations 
 is the Weyl tensor 



Conformal transformations 

Performing the conformal transformation  in f(R) field equations we get  

We can then choose the conformal factor to be 

Rescaling ω in such a way that kφ = ω, and k =√ 1/6, we obtain the Lagrangian 
equivalence 

and the Einstein equations in standard form 

Here N is the inverse function of P’(φ) and 

with the potential 

However, the problem is completely solved if P’(φ) can be analytically inverted 

In summary, a fourth-order theory is conformally equivalent to the standard second-
order Einstein theory plus a scalar field 



Conformal transformations 

This procedure can be extended to more general theories. If the theory is assumed 
to be higher than fourth order, we may have Lagrangian densities of the form 

Every   ☐   operator introduces two further terms of derivation into the field equations. 

 
 is a sixth-order theory and the above approach can be pursued by considering a 
conformal factor of the form 

For example a theory like 



Conformal transformations 

In general, increasing two orders of derivation in the field equations (i.e., for every 
term ☐ R), corresponds to adding a scalar field in the conformally transformed 
frame 

A sixth-order theory can be reduced to an Einstein theory with two minimally 
coupled scalar fields; a 2n-order theory can be, in principle, reduced to an Einstein 
theory plus (n−1)-scalar fields 	  	  
	  	  	  	  	  	  	  	  	  	  S. Gottlober, H-J Schmidt, and A A Starobinsky, Class. Quantum Grav. 7, 893 (1990) 

Conformal transformations work at three levels: 

(i)  on the Lagrangian of the given theory; 
(ii) on the field equations; 
(iii) on the solutions. 

They allow to classify gravitational degrees of freedom and reduce 
 any higher-order theory to Einstein plus scalar field 



The Palatini formalism (metric-affine formulation) comes out in the case in 
 which g and Γ are two independent object . Equivalence Principle could not hold any more 

Let usconsider  an 

The field equations derived with the Palatini variational principle are 

is a symmetric tensor density of weight 1, which naturally leads to the introduction of a new 
metric hμν conformally related to gμν 

With this definition Γ αμν is the Levi-Civita connection of the metric hμν, with the only restriction 
that the conformal factor relating gμν and hμν be non-degenerate 

In the case of the Hilbert–Einstein Lagrangian it is f ‘(R) = 1 

S.Capozziello, M.F.De Laurentis, L.Fatibene, M.Ferraris, 
S.Garruto arXiv 1509.08008 (2015) 
 S. Capozziello, M. De Laurentis, M. Francaviglia, S. 
Mercadante: Foundations of Physics 39, 1161 (2009) 

The Palatini formalism 	  



The Palatini formalism 
The conformal transformation implies 

It is useful to consider the trace of the field equation 

We refer to this scalar equation as the structural equation of space–time 

In vacuo and in the presence of conformally invariant matter with T (m) = 0, this 
scalar equation admits constant solutions 

In these cases, Palatini f (R)-gravity reduces to GR with a cosmological constant 

In the case of interaction with matter fields, the structural equation, if explicitly 
solvable, provides in principle an expression R = F (T (m)) and, as a result, 
both f (R) and f ′(R) can be expressed in terms of T (m). 

This fact allows one to express, at least formally, R in terms of 
T (m), which has deep consequences for the description of physical systems 

Matter rules the bi-metric structure of space–time and, consequently, both the geodesic 
and metric structures which are intrinsically different 



The Palatini formalism to non-minimally  
coupled scalar–tensor theories 
 The scalar–tensor action can be generalized as 

The equation of motion of the matter fields is 

The field equations for the 
metric gμν and the 
connection Γ αμν are 

the structural equation of space–time implies that 

where we must require that F(φ) > 0 

The bi-metric structure of space–time is thus defined by the ansatz 

so that 

It follows that in vacuo T (φ) = 0 and T (m) = 0 this theory is equivalent to vacuum GR 

If F(φ) = F0 = const. we recover GR with a minimally coupled scalar field 



Equivalence between scalar–tensor and metric f (R)-gravity  
(a realization of Lovelock approach) 

In metric f (R)-gravity, we introduce the scalar φ ≡ R; then the action 

is rewritten in the form 

when f ‘’(R) ≠ 0, where 

coincides with if φ = R. 

Vice-versa, let us vary the action with respect to φ, which leads to 

The action has the Brans–Dicke form 

with Brans–Dicke field ψ, Brans–Dicke parameter ω = 0, and potential U(ψ) = V [φ(ψ)] 

An ω = 0 Brans–Dicke theory was originally studied for the purpose of obtaining a Yukawa 
correction to the Newtonian potential in the weak-field limit and called ‘‘O’Hanlon theory’’ or 
‘‘massive dilaton gravity’’ 

The variation of the action yields the field 
equations 



Equivalence between scalar–tensor and Palatini f (R)-gravity 

The Palatini action 

is equivalent to 

It is straightforward to see that the variation of this action with respect to χ yields χ = R 

We can now use the field φ ≡ f ‘(χ) and the fact that the curvature R is the (metric) Ricci 
curvature of the new metric hμν = f ‘(R) gμν conformally related to gμν 

Using now the well known transformation property of the Ricci scalar under conformal 
rescalings 

and discarding a boundary term, the action  can be presented in the form 

where 

This action is clearly that of a Brans–Dicke theory with Brans–Dicke parameter ω = −3/2 and 
a potential 

A. Borowiec, S. Capozziello, M. De Laurentis, F. S. N. Lobo, A. Paliathanasis, M. Paolella, A. Wojnar, PR D 91, 2, 023517 (2015) 



The interpretation of conformal frames 

The conformal transformation from the Jordan to the Einstein frame is a 
mathematical map which allows one to study several aspects any Extended 
Theories of Gravity 

having now available both the Jordan and the Einstein conformal frames, one 
wonders whether the two frames are also physically equivalent or only 
mathematically related 

the problem is whether the physical meaning of the theory is ‘‘preserved’’ or not by the 
use of conformal transformations 

One has now the metric  
 
                                                               gμν and its conformal cousin ğμν 
 
 
  
and the question has been posed of which one is the ‘‘physical metric’’, i.e., the metric 
from which curvature, geometry, and physical effects should be calculated and 
compared with experiment 

 gμν 	   ğμν 



The question of Jordan frame and Einstein frame can be summarized according to the 
fact  that 
 - geometry can be modified (left hand side of Einstein equations) i.e. the Jordan 
frame or 
 - the  source can be modified preserving the Einstein tensor (right hand side Einstein 
equations), i.e. the Einstein frame.   

This means that matter remains minimally coupled in the Jordan frame while it is non-
minimally coupled In the Einstein frame 

From a genuine physical point of view the  Jordan frame  is the physical frame,  
 since matter traces  the geodesic structure 

The interpretation of conformal frames 



Applications to astrophysics  

ü  	  Are needed to probe Extended Theories of Gravity 
ü  Could be a signature at IR-scales 
ü  Could address phenomena out of GR 
ü  Could probe Dark Matter and Dark Energy effects 



Some exact Black hole solutions 

Let us consider an analytic function f(R), the variational principle for this action is  

By varying with respect to the metric, we obtain the field equations 

The most general spherically symmetric solution ca be written as follows: 

We can consider a coordinate transformation that maps metric in a new one where the 

off-diagonal term vanishes and m4(t′, r′) = −r2, that is, 



      Spherical symmetric solution 

…by inserting this metric into the field 

equations , one obtains 

…where the two quantities Hμν and H read 

After some calculations we can find out general solutions for the field equations giving the 

dependence of the Ricci scalar on the radial coordinate r 

The same procedure can be worked out with Noether symmetries approach. 

M. De Laurentis, L. Sebastiani, submitted to PRD (2015) 
S. Capozziello, M. De Laurentis, A. Stabile, Class. Quantum Grav. 27, 165008, (2010) 

M. De Laurentis, M. Paolella, S. Capozziello, PRD 91, 083531 (2015) 



Axially symmetry from spherical symmetry 

It is possible to obtain an axially symmetric solution starting from  spherical 
symmetry using the tedrad fromalism 

The complex tetrad null vectors are  

The new metric is 

S. Capozziello, M. De Laurentis, A. Stabile, Class. Quantum Grav. 27, 165008, (2010) 
M. De Laurentis, EPJC 71, 1675, (2011) 

M. De Laurentis, R. Giambò submitted to CQG (2015)	  



Dynamics of a particle around a black hole 

with the equations of motion                                 and 

that gives the orbits, 
the horizon and 
static limit 

 

 
r(φ)
External Horizon
Internal Horizon
Static limit

Solution of Hamilton’s equations  

Standard Hamiltonian formalism for geodesic motion 

The Hamiltonian reads: 

Specifies the initial value of the vector 
in the phase space: position and 
momenta 

Free evolution and use of Carter’s 
constant as a check of the 
accuracy of the numerical integration 

Comparing  orbits with GR (Kerr solution) 

M. De Laurentis et al. in preparation 

F. Tamburini, M. De Laurentis, R. Kerr accepted in PRL (2015)  
 M. De Laurentis, S. Capozziello, Nova publisher ISBN: 978-1-61942-929-1 (2012)	  



GW emission from a black holes 

One would need to use a consistent perturbation treatment: time-domain solution of 
modified Zerilli-Regge-Wheeler equation  

Use the  multipole expansion of 
gravitational radiation  to gain an 
idea about the general qualitative 
features of the GWs 

Precursor + burst structure of waveforms 

0 10 20 30 40 50 60 70 80 90 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t/M 

dE
22

/d
t/µ

2

 

 
a=0.9
a=0.8
a=0.7
a=0.6
a=0.5
a=0.4
a=0.3

location of the f(R)-
corrective term 

GW-luminosity 
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M. De Laurentis, in preparation (2015) 
M. De Laurentis, A. Spallicci submitted to CQG (2015) 



Field equations  at O (2)-order, that is at the 
Newtonian level, are 

Hydrostatic equilibrium and Stellar structures 

We recall that the energy-momentum tensor for a 
perfect fluid is 

modified Poisson equation 

Being the pressure contribution negligible in the field equations in the Newtonian 
approximation, we have 

For f’’(R) = 0 we have the standard Poisson equation 

From the Bianchi identity we have 

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012) 

fn(R)=fn(R(2)+O(4))=fn(0)+fn+1(0)R(2)+… 

I. De Martino M. De Laurentis, F. Atrio-Barandela, S. Capozziello, MNRAS 442, 921 (2014). 



Hydrostatic equilibrium  

Let us suppose that matter still  
satisfies a polytropic equation p = K γργ 

we obtain an integro-differential equation for the gravitational potential , that is 

Lané-Emden equation in f(R)-gravity 

R. Farinelli, M. De Laurentis, S. Capozziello, S.D. Odintsov, MNRAS 440, 3, 2894. (2014) 
S. Capozziello, M. De Laurentis, A. Stabile, S.D. Odintsov, PRD 83, 064004, (2011) 

We find the radial profiles of the 
gravitational potential by solving for some 
values of n (polytropic index) 

New solutions are  physically relevant and 
could explain exotic systems out of Main 
Sequence (magnetars, variable  stars). 



Self gravitating systems 

Field equations in f(R)-gravity give rise to the  Modified Poisson equations.  
 We know that 

Also we well known that  

…and then the field equations assume this form 

ü    Ψ is the further gravitational potential related to 
the metric component g (2)

ii  

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012) 



Jeans instability in f(R)-gravity 

Dynamics and collapse of collisionless self-gravitating systems is described by the 
coupled collisionless Boltzmann and Poisson equations 

A dispersion equation is achieved for neutral dust-
particle systems where a generalized Jeans wave 
number is obtained 

S. Capozziello, M. De Laurentis, I. De Martino, M. Formisano, S.D. Odintsov  PRD 85, 044022, (2011) 

Combining the above equations we obtain a relation 
between Φ1  and Ψ1 

Plot of  dispersion function  

The bold line indicates the plot of 
modified  dispersion relation while 
the thin line indicates the plot of the 
standard dispersion 



The Jeans mass limit in   f(R)-gravity 

We have also compared the behavior with the 
 temperature of the Jeans mass for various types of 
interstellar molecular clouds 

 M. De Laurentis, S. Capozziello, Nova publisher ISBN: 978-1-61942-929-1 (2012)   

In our model the limit (in unit of mass) to 
start the collapse of an interstellar cloud is 
lower than the classical one advantaging 
the structure formation. 



We have linearized the field equations for higher order theories that contain scalar invariants 
other than the Ricci scalar 

Varying with respect to the metric, one gets the field equations  

Massive and massless modes 

where 

To find the various GW modes, we need to linearize 
gravity around a Minkowski background: 

S. Capozziello, G. Basini, M. De Laurentis, Eur. Phys. J. C 71, 1679 (2011)  
S.Capozziello, C. Corda, M. De Laurentis: PLB 669, 255 (2008)  

Perturbing the field equations, … we get 
 

The equation for the perturbations is 

We have a modified dispersion relation which corresponds to 
a massless spin-2 field (k2=0) and massive 2-spin ghost 
mode 



Massive mode 

Solutions are  
plane waves 

For k2=0 mode  a massless spin-2 field with two  independent 
polarizations plus a scalar mode  

a massive spin-2 ghost mode and there are five independent 
polarization tensors plus a scalar mode For k2 ≠0 mode   

Massive and massless modes 

In this frame we may take the bases of polarizations defined in this way 

…the characteristic amplitude 

two standard polarizations of GW arise from GR 

 In the z direction, a gauge in which only A11, A22, and A12 = A21 are different to zero can be 
chosen. The condition h = 0 gives A11 = −A22. 

the massive field arising 
from the generic high-order theory 



Classification of gravitational modes  

….and the amplitude in terms of the 6 polarization states as 

is the group velocity of the massive 
 spin-2 field and is given by 

When the spin-2 field is massive,  we have  six polarizations defined by 

K. Bamba, S. Capozziello M. De Laurentis, S. Nojiri, D. Saez-Gomez PLB 727, 194 (2013) 
M. De Laurentis, S. Capozziello, G. Basini MPLA A 24, 0217(2012) 
C. Bogdanos, S.Capozziello, M. De Laurentis, S. Nesseris, Astrpart. Phys. 34 (2010) 236  



Classification of gravitational modes  

An interesting  fact is this result is perfectly in agreement with the fundamental 
Riemann theorem stating that in a N –dimensional space,  

The fact that 6 polarization states emerge is in agreement with the possible allowed 
polarizations of spin-2 field  

H. van Dam and M. J. G. Veltman, Nucl. Phys. B 2 ,397 (1970). 

In fact the spin degenerations is 

	  d = (2s+1)      mg ≠ 0                     s = 2, d = 5    	  	  

d = 2s               mg = 0                   s = 1, d = 2    	  	  

d = (2s+1)      mg ≠ 0                     s = 0, d = 1    	  	  

N =N(N −  1)/ 2	  

gravitational degrees of freedom are allowed.	  



Detector response  to  
stochastic 
background of GWs 

We have investigated the possible detectability of such additional polarization modes of a stochastic 
gravitational wave by ground-based and space interferometric detectors. 

We found that these massive modes are 
certainly of interest 
 for direct detection by the VIRGO-LIGO, 
LISA experiments. 

Plots of angular pattern 
functions of a detector for each 
polarization 

S. Bellucci, S. Capozziello, M. De Laurentis, V. Faraoni, Phys. Rev. D 79, 104004 (2009) 

Displacement  induced by 
each mode on a sphere of 
test particles 

S. Capozziello, R. Cianci, M. De Laurentis, S. Vignolo, EPJC 70, 341-349, (2010) 

S.Capozziello, C. Corda, M. De Laurentis, MPLA 22, 2647, (2007); MPLA 15, 1097, (2007). 
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Quadrupolar gravitational radiation in f(R)-gravity  

We calculate the Minkowskian limit for  a class of analytic f(R)-Lagrangian 

Field equations  at the first order of approximation in term of the perturbation , 
become: 

The explicit expressions of the Ricci tensor 
and scalar, at the first order in the metric 
perturbation, read 

M. De Laurentis, I. De Martino IJGMMP 12, 1550004 (2014) 
M. De Laurentis, I. De Martino MNRAS 431, 741 (2013) 
M. De Laurentis, S. Capozziello, Astrop. Phys. 35, 5, 257 (2011) 
 



Assuming that the source is localized in a finite region, as a consequence,  
outside this region 

the energy momentum tensor of gravitational field in f (R) gravity 

the energy momentum tensor consists of a sum of a GR contribution plus a term coming from f (R) gravity: 

which in terms of 
 the perturbation h is 

the energy momentum tensor assumes the 
following form: 

Quadrupolar gravitational radiation in f(R)-gravity  



Radiated Energy 

In order to calculate the radiated energy of a GW source suppose that hμν can be represented by a 
discrete spectral representation. 

The instantaneous flux of energy is given by 

Defining the following momenta  
of the mass–energy distribution: 

and analysing the radiation in  
terms of multipoles, found 

the total average flux of energy due to the tensor wave 

Precisely, 
 for f’’0 = 0 and  
f’0 = 4/ 3 



Application to the binary systems  

Our goal is to use a sample of binary pulsar systems to fix bounds on f (R) parameters. 

We assume that the motion is Keplerian and the orbit is in the (x, y) plane 

the quadrupole matrix is 

where 

the time derivatives of the quadrupole: 

whit 



Application to the binary systems  

we can perform the time 
average of the 
radiated power by writing 

and finally, we get the first time derivative of the orbital period: 

we will go on to constrain the f (R) theories estimating f’’0  from the comparison 
between the theoretical predictions of dTb and the observed one. 

M. De Laurentis, I. De Martino IJGMMP 12, 1550004 (2014) 
M. De Laurentis, I. De Martino MNRAS 431, 741 (2013) 
M. De Laurentis, R. De Rosa, F. Garufi and L. Milano, Mon. Not. R. Astron. Soc. 424, 2371 (2012) 
 



Let us now use the published numerical 
values for the specific example of PSR 
1913 + 16 to numerically evaluate the 
above equations 

 R.A. Hulse, J.M. Taylor ApJ Lett. 195 L51 (1975)  
 J.H. Taylor, L.A. Flower, P.M. Mc Culloch Nature 277 437 (1979) ; 
  J.H. Taylor, J.M. Weisberg, Astrophys J. 253 , 908 (1982)   

Application to the binary systems: The PSR 1913 + 16 case 

Orbital decay rate for  PSR 
1913 + 16 in f(R)-gravity. 
Upper limit set by Taylor et al. 
in dashed line. GR limit 
3.36×  10-12 in dotted line 
and the lower limit set by 
Taylor et al. in dashdot line. 
While in solid line is plotted 
dT f (R) 

A class of f(R) agrees with data! 



Application to the binary systems: PPK parameters 
for PSR J0737-3039 

 In GR we have the 
following masses for PSR J0737-3039 

Dependence of the companion mass upon 
the pulsar  Colors indicate: 
Curve ω(m1,m2) is blue, curve γ(m1,m2) is 
brown, curve Pb(m1,m2)  is red, curve s 
(m1,m2) is pink, curve r(m1,m2) is green, 
curve R(m1,m2) is black. 

In f(R ) we obtain 

M. De Laurentis, I. De Martino,  P. Freire in preparation 



Modified  TOV equations in f(R) gravity  

 the equations for a spherically symmetric and static perfect fluid also in f(R)  
gravity 

and  

 we need a further equations to solve the above system and then  we consider also the 
trace equation in the following form: 

 remembering that 

 which for f(R) = R  is reduced to the equality    R = 8 π( ρ-3 p) 



The case of  f(R)= R + Rε logR 

Let us consider a 
correction to the Hilbert-
Einstein action given by 

 It is easy to show that 

It is interesting to define the right physical dimensions of the coupling 
constant and to control the magnitude of the corrections with respect to the 
standard Einstein gravity 

S. Capozziello, M. De Laurentis, M. Francaviglia, Astrop. Phys. 29, 125 (2008) 
M. De Laurentis, R. De Rosa, F. Garufi and L. Milano, Mon. Not. R. Astron. Soc. 424, 2371 (2012) 
 T. Clifton, J. D. Barrow, Phys. Rev. D 72 103005 (2005) 
 T. Clifton, J. D. Barrow, Phys. Rev. D 81, 063006 (2010) 
 S. Capozziello, A. Stabile, A. Troisi, Class. Quantum Grav. 25 085004 (2008) 
 S. Capozziello, M. De Laurentis, A. Stabile Class. Quantum Grav. 27, 165008 (2010) 



φ
	  

Example of solution of the field equations 

S. Capozziello, M. De Laurentis, R. Farinelli, S.D. Odintsov arXiv: 1509.04163   



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 11.5  12  12.5  13  13.5  14  14.5  15  15.5  16  16.5

M/
M s

R (km)

EoS BSK20

TOV   
ε=-0.001  
ε=-0.002  
ε=-0.005  
ε=-0.008  

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 11.5  12  12.5  13  13.5  14  14.5  15  15.5  16

M/
M s

R (km)

EoS BSK21

TOV   
ε=-0.001  
ε=-0.002  
ε=-0.005  
ε=-0.008  

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10  11  12  13  14  15  16  17  18

M/
M s

R (km)

EoS BSK19

TOV   
ε=-0.001  
ε=-0.002  
ε=-0.005  
ε=-0.008  

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10  11  12  13  14  15  16  17

M
/M

s

R (km)

EoS Sly

TOV   
ε=-0.001  
ε=-0.002  
ε=-0.005  
ε=-0.008  

M-R diagram 

For each EOS the maximal central density is determined by the condition ρc - 3p > 0 
S. Capozziello, M. De Laurentis, R. Farinelli, S.D. Odintsov arXiv: 1509.04163   



 Black Hole Cam project can give hints in this direction…..  

ü  ETGs  are a useful approach to IR and UV problems of GR 
ü  Naturally address problems like DE and DM extending the gravitational sector. 
ü  However results of GR are easily recovered since Hilbert-Einstein action is just a 

particular  ETG 
ü  An important challenge is to find out exact solutions for ETGs. This allows to 

control mathematics and physics of the theory 

ü  The general philosophy is that gravity could not be the same at any scale and 
GR is a good theory only at scales investigated up to now 

ü  We are searching for an EXPERIMENTUM CRUCIS to retain definitely such 
theories or rule out them 

Conclusions and perspectives 



Work in progress!!! 

Hints are welcome!!! 


