Magnetic Reconnection & Acceleration around BHs and Jets

ElisaBete de Gouveia Dal Pino IAG – Universidade de São Paulo

Collaborators:

L. Kadowaki, B. Khiali,
C. Singh, M. V. del Valle,
G. Kowal, Santos-Lima
A. Lazarian, H. Sol, Y. Mizuno

Goethe University, ITP, October, 2016

COSMIC MAGNETIC RECONNECTION

Directly observed:

Solar corona

magnetotail

Reconnection is FAST ! $V_{rec} \sim V_A = B/(4\pi\rho)^{1/2}$

Accretion disk coronae

> Stellar Xray Flares

Star Formation and ISM

Reconnection also beyond Solar System

Pulsars

AGN & GRB Jets

Accreting NS and SGRs

Reconnection may be the key to solve another problem

Particle acceleration in compact sources: new challenges

- pulsars
- Black Hole sources
- GRB and AGN relativistic jets

Standard process -> Fermi acceleration in shocks:

difficulties to explain relativistic particles origin and associated very high energy emission (up to TeV) occurring in very compact regions in:

magnetically dominated ? -> shocks weak

This talk

Fast magnetic reconnection and Particle acceleration:

Review in (collisional) MHD flows

surrounds of BHs & relativistic jets

its implications for very high energy (VHE), & neutrino emission, conversion of magnetic into kinetic energy

Fast Reconnection in MHD flows

Turbulence drives FAST RECONNECTION !

(Lazarian & Vishniac 1999; Eyink et al. 2011)

Magnetic lines wandering: many simultaneous reconnection events

Successfully tested in numerical simulations (Kowal et

(Alternative~descriptions: Shibata & Tanuma01; Loureiro+07; Bhattacharjee+09)

Reconnection a powerful mechanism to accelerate particles

This has been tested with \rightarrow numerical simulations:

Most simulations of particle acceleration by magnetic reconnection:
 2D collisionless (kinetic) plasmas (PIC) (e.g. Drake+ 06; Zenitani & Hoshino 01; 07; 08; Cerutti, Uzdensky+ 13; Li+ 15) and 3D (Sironi & Spitkovsky 2014; Guo+2015; 16)
 @ scales:

few plasma inertial length \sim 100-1000 c/ $\omega_{\rm p}$

Larger-scale astrophysical systems (AGNs, BHBs):

→ MHD description → collisional reconnection (Kowal, de Gouveia Dal Pino & Lazarian 2011, 2012; de Gouveia Dal Pino+ 2014, 2015; del Valle et al. 2016)

Particle Acceleration by Reconnection using MHD Simulations with test particles

Isothermal MHD equations to build reconnection domain: second-order Godunov scheme and HLLD Riemann solver (Kowal et al 2009)

Inject test particles in the MHD domain of reconnection and follow their trajectories (6th order Runge-Kutta-Gauss):

$$\frac{d}{dt}(\gamma \, m \, \mathbf{u}) = q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) \quad \longrightarrow \quad$$

$$\frac{d}{dt}(\gamma m \boldsymbol{u}) = q\left[(\boldsymbol{u} - \boldsymbol{v}) \times \boldsymbol{B}\right]$$

Kowal, de Gouveia Dal Pino, Lazarian 2011; 2012

Particle Acceleration in 2D MHD Reconnection

>

Kowal, de Gouveia Dal Pino, Lazarian, ApJ 2011

2D Multiple current sheets to compare with PIC simulations

Kinetic energy increase

Interpretation of Particle Acceleration in reconnection sites

Shock Acceleration

1st-order Fermi (e.g.Bell+1978)

Reconnection Acceleration

1st-order Fermi (de Gouveia Dal Pino & Lazarian, A&A 2005):

particles bounce back and forth between 2 converging magnetic flows

 $<\Delta E/E > ~ v_{rec}/C$

1st order Fermi Reconnection Acceleration: successful numerical testing in 3D MHD

1601

 Acceleration more efficient in 3D than in 2D

1st order Fermi Reconnection Acceleration: successful numerical testing in 3D MHD

log E,

del Valle, de Gouveia Dal Pino, Kowal MNRAS 2016

3D MHD Reconnection Acceleration tested for different values of $v_A/c = 1/10 - 1/1000$

Reconnection acceleration beyond the SS

- Zenitani & Hoshino (2001-2007)
- de Gouveia Dal Pino & Lazarian (2003, 2005)
- Dmitruk, Matthaeus+ (2003)
- de Gouveia Dal Pino et al. (2010)
- Kowal, de Gouveia Dal Pino, Lazarian (2011, 2012)
- Giannios+ (2009), Giannios, 2010, 2013)
- del Valle, Romero et al. (2011)
- Cerutti et al. (2013)
- de Gouveia Dal Pino, Kowal & Lazarian (2014)
- Cerutti, Werner, Uzdensky, Begelman (2014)
- Lyutikov (2014)
- Wu+ (2014)
- Dexter+ (2014)
- Werner+ (2014)
- Sironi & Spitkovsky (2014)
- Singh, de Gouveia Dal Pino, Kadowaki (2015)
- Kadowaki, de Gouveia Dal Pino, Singh (2015)
- Khiali, de Gouveia Dal Pino, del Valle (2015)
- Khiali, de Gouveia Dal Pino, Sol (2015)
- de Gouveia Dal Pino & Kowal (2015)
- Khiali & de Gouveia Dal Pino (2016)
- del Valle, de Gouveia Dal Pino, Kowal (2016)
- de Gouveia Dal Pino & Kowal (2015)
- Uzdensky (2015)
- Guo et al (2015)
- Sironi, Petropoulou, Giannios (2015)
- Singh, Mizuno, de Gouveia Dal Pino (2016)....

Application to BHs and relativistic jets

Black Hole sources are accelerators (specially of cosmic rays >10 17 eV) and VHE emitters

AGNs (blazars, radio-galaxies, seyferts)

-RAY BINARY SCHEMATIC

Black Hole Binaries (Microquasars)

Shells collide (internal shock wave

ack hole engine

GRBs

Radio Galaxy 3C31 = NGC 383 Copyright NRAO/AUI 2006

VHE emission more common in Blazars

High Luminous AGNs

- ✓ Jet ~ along our line of sight
- VHE Emission (poor resolution): attributed to particle acceleration *along* the relativistic jet
- ✓ with apparent high flux due to strong Doppler Accretion Dis boosting (γ ~5-10)
- ✓ shock acceleration in kinetic-dominated flux

...*But* a few Non-Blazars Low Luminous AGNs

Also Gamma Ray emitters
 Jet does not point to the line of sight
 no significant Doppler boosting !

CenA

Does it come from core or jet ?

Rapid variability emission: ~100 r_s
 -> compact *emission (core)*?

Where are particles accelerated?

Is acceleration magnetically dominated?

Reconnection Acceleration?

Reconnection acceleration in the surrounds of BHs ?

Accretion disk/jet systems (AGNs & galactic BHs)

de Gouveia Dal Pino & Lazarian 2005; de Gouveia Dal Pino+2010 37

Kadowaki, Master thesis 2011 (also Zani & Ferreira 2013; Romanova+)

Kadowaki, Master thesis 2011 (also Zani & Ferreira 2013; Romanova+)

Kadowaki, Master thesis 2011 (also Zani & Ferreira 2013; Romanova+)

Dexter, McKinney et al. 2014: reconnection seen in GRMHD simulations (also Koide & Arai 2008)

Reconnection acceleration in the surrounds of BHs

Revisited the model to evaluate reconnection power and acceleration -> apply to more than 230 sources:

- Different accretion disk models (Shakura-Sunyaev; MDAF)
- Coronal model by Liu et al. (2002, 2003).
- Fast reconnection in the surrounds of the BH driven by turbulence

Reconnection acceleration in the surrounds of BHs

$$B \cong 9.96 \times 10^8 r_X^{-1.25} \xi^{0.5} m^{-0.5} \text{ G}$$

W \approx 1.66 \times 10^{35} \psi^{-0.5} r_X^{-0.62} l^{-0.25} l_X q^{-2} \xi^{0.75} m \text{ ergs}^{-1}
\Delta R_X \approx 2.34 \times 10^4 \psi^{-0.31} r_X^{0.48} l^{-0.15} l_X q^{-0.75} \xi^{-0.15} m \text{ cm}
n_c \approx 8.02 \times 10^{18} \psi^{0.5} r_X^{-0.375} l^{-0.75} q^{-2} \xi^{0.25} m^{-1} \text{ cm}^{-3}

Reconnection acceleration in the surrounds of BHs

Magnetic Power

$$\dot{W}_B \simeq 1.66 \times 10^{35} \Gamma^{-rac{1}{2}} r_X^{-rac{5}{8}} I^{-rac{1}{4}} I_X q^{-2} \dot{m}^{rac{3}{4}} m \ erg/s$$

Magnetic Reconnection Power around BHs

Magnetic Reconnection Power around BHs

Also applied the reconnection acceleration model in the *core* to build the full SPECTRUM of

Non-Blazars: CenA, M87, PerA, 3C110 (Khiali, de Gouveia Dal Pino, Sol, arXiv:1504.07592)

> Microquasars: Cyg X1 and Cyg X3 (Khiali, de Gouveia Dal Pino, del Valle, MNRAS 2015)

Reconnection Acceleration & Radiation from the core

 \checkmark Cooling of the accelerated particles -> emission:

t_{acc} ~ t_{loss}(Synchrotron, SSC, pp, pγ)

Ex.: Radio-galaxy Cen A

Khiali, de Gouveia Dal Pino, Sol 2015 (arXiv:1504.07592); Khiali, de Gouveia Dal Pino, del Valle, MNRAS 2015

Neutrino emission from *cores* of low luminous AGNs ($z \sim 0 - 5.2$) due to reconnection acceleration

Khiali & de Gouveia Dal Pino, MNRAS 2015

Reconnection Acceleration *within* Relativistic Jets

"Blazar" Viewing down the jet

> "Quasar / Seyfert 1" Viewing at an angle to the jet

> > "Radio Galaxy / Seyfert 2' Viewing at 90° from the jet

Black Hole

Accretion Disk

If jet emission produced near the core and jet is magnetic, then reconnection acceleration may prevail

Are Jets born magnetically dominated?

Magneto-centrifugal acceleration by helical field arising from the accretion disk (Blandford & Payne)

Or powered by BH spin (Blandford-Znajek)

Major Problem 1:

Most energy in Poynting Flux (magnetic field) → Need rapid conversion (dissipation) to kinetic:

Requires RECONNECTION?

GRMHD simulations (e.g., McKinney 06)

Very-rapid TeV Flares in *Blazar Jets* hard to explain with standard acceleration

Variation timescale:

 $t_v \sim 200 s < r_s/c \sim 3M_9$ hour

- For TeV emission to avoid pair creation $\gamma_{em} > 50$ (Begelman, Fabian & Rees 2008)
- But bulk jet $\gamma \sim 5-10$
- Emitter: compact and/or extremely fast
- A proposed Model:
 Reconnection
 inside the jet

PKS2155-304 (Aharonian et al. 2007) See also Mrk501, PKS1222+21

GRB jet prompt gamma-ray emission may require reconnection acceleration too

Internal collision-induced magnetic reconnection turbulent model (ICMART) (Zhang & Yan 2011):

> GRB prompt emission: turbulence, magnetic reconnection, and particle acceleration via internal collisions of multiple launched parcels

(See also Gianios 2008; McKinney & Uzdensky 2012)

Regions of AGN & GRB Jet Propagation

Modified from D. Meier & Y. Mizuno (courtesy)

 $\sim 10 - 10^{2.5 \pm 0.5} r_{S}$

CD Kink Instability

- Well-known instability in laboratory plasma (TOKAMAK) and astrophysical plasmas (Sun, jets, pulsars)
- In configurations with strong toroidal magnetic fields, current-driven (CD) kink mode (m=1) is unstable
- This instability excites large-scale helical motions that can strongly distort or even disrupt the system
- Distorted magnetic field structure may trigger magnetic reconnection

Kink instability in lab plasma (Moser & Bellan 2012)

MHD Simulations of Reconnection driven by Kink in Magnetically Dominated Relativistic Jets (GRBs & AGNs)

• Precession perturbation allows growth of CD kink instability with helical density distortion.

• Helical kink advected with the flow with continuous growth of kink amplitude in nonlinear phase.

• Helical structure is disrupted

• Magnetic energy converted into kinetic

Singh, Mizuno, de Gouveia Dal Pino, ApJ 2016

Reconnection driven by Kink in Magnetically Dominated Relativistic Jets (GRBs & AGNs)

Sites for magnetic reconnection, dissipation, particle acceleration (and gammarays)!

Singh, Mizuno, de Gouveia Dal Pino, ApJ 2016

Summary

 Reconnection can be important in accretion/jet systems for particle acceleration, dissipation of magnetic energy and conversion MDF -> KDF

- Fermi particle acceleration by turbulent magnetic reconnection (numerically tested): can explain gamma-ray of microquasars and nonblazar AGNs as coming from the *core*
- ✓ The magnetic reconnection power matches well with the observed correlation of radio/gamma-ray luminosity versus BH mass of microquasars and non-blazar AGNs over 10 orders of magnitude in mass
- Reconnection acceleration in the core -> SEDs of non-blazars and microquasars
- Reconnection in magnetically dominated relativistic jets can be triggered by CD Kink instability, can explain rapid variability and possibly drive Fermi acceleration and gamma-ray emission too

CTA: Cherenkov Telescope Array

ASTRI Mini-Array

CTA & ASTRI Mini-Array will locate the real region of acceleration and help to unveil the physics in the core/jet launching

EXTRA SLIDES

In situ 1st-order Fermi Relativistic MHD Reconnection x shock acceleration in Jets

Competing mechanisms

de Gouveia Dal Pino & Kowal, ASSL 2015

Particle Acceleration in 3D MHD Pure Turbulence

10⁻⁴

~1 2.54

101

Time [t_{Alfven}]

10⁰

10

100

10-2

10²

100

10²

104

10

Perseus cluster

scattering by approaching and receding magnetic irregularities

Kowal, de Gouveia Dal Pino, Lazarian, PRL 2012

Magnetic Reconnection around BHs works for different Accretion Disk Models

Soft -> Hard

MDAF accretion disk Hard -> Soft

Reconnection Acceleration X Radiative Losses

 γ-ray flux absorption by pair production as function of energy and height z above the plane of the accretion disk

Ex.: Radio-galaxy Cen A

z>1 Rs -> NO absorption

Khiali, de Gouveia Dal Pino, Sol 2015

3D MHD Reconnection Acceleration tested for different parameters of **turbulence**

Acceleration time X E for different turbulence injection power P_{inj}

Acceleration time X E for different turbulence injection scale 1/k_{inj}

Acceleration time -> weak dependence with parameters of turbulence

-> Compatible with the fact that turbulence is just the driving mechanism of fast reconnection in the large scale current sheet

(del Valle, de Gouveia Dal Pino, Kowal 2016)

Particle Acceleration in 2D x 3D MHD Reconnection

