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Effective field theory

Loosely speaking the idea is to integrate out degrees of freedom that are
irrelevant at the energy at which we do physics.

Typical example: Quantum Chromodynamics (QCD): at energies above the
confinement scale or some 250 MeV we deal with quarks, while below we have
bound states of quarks: e.g. mesons.

We can build an effective field theory by considering a theory of mesons (Chiral
Perturbation Theory) which is an effective field theory for QCD.

The same mathematical techniques can be applied to quantum gravity.

It is not necessary to know the fundamental theory to write down the
corresponding effective field theory: we need to know

— the symmetries of the problem

— the field content at low energy



Why quantize gravity? Because we have to as other forces of
nature are quantized!
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When does gravity become comparable 1n strength to other forces?
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Effective action for GR

How can we describe general relativity quantum mechanically?
Well known issues with linearized GR: it is not renormalizable.

This 1s the reason d’€tre of string theory, loop quantum gravity etc...
How much can we understand using QFT techniques?

We have good reasons to think that length scales smaller than the
Planck scale are not observables due to the formation of small black
holes.

Effective field theories might be all we need to discuss physics at
least up to the Planck scale.



The goal is to try to make the link with observables.

Or at least with with thought experiments.

It 1s very conservative.

What can we learn using techniques we actually understand

well, and which are compatible with nature as we know it:
standard model and GR.



I am going to assume general covariance (diffeomorphism
invariance)

Quantum gravity has only 2 dofs namely the massless
graviton (which has 2 helicity states).

We know the particle content of the “matter theory” (SM,
GUT, inflation etc).

We can write down an effective action for quantum gravity.



This program was started by Feynman in the 60’s using
linearized GR.

Try to find/calculate observables

Try to find consistency conditions which could guide us on
our path towards a quantization of GR.



Einstein’s equations
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The Ricci scalar R and tensor R ,, contain two derivatives of the metric.

They thus have mass dimension 2, this is important to organize the effective field theory.

G is Newton’s constant, it is related to the Planck mass.

T, is the energy-momentum tensor: this is your particle physics model.

It can be derived from the Hilbert-Einstein action:
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Perturbative linearized general relativity

Matter coupling to gravity is described by general relativity:
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Linearized general relativity can be regarded as an
effective field theory valid up to the reduced Planck mass
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The theory 1s non-renormalizable, but as we shall see
some predictions are still possible.



Effective action for quantum gravity

The Hilbert-Einstein action

_ 1 4
S—2R/R\/_gda:

receives corrections from gquantum gravity, integrating out fluctuations of the graviton (and
other matter fields depending on the energy under consideration),
one obtains:
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The non-local part of the EFT

* The Wilson coefficients of the non-local operators are universal
predictions of quantum gravity:
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Vector —50 176 |—26
Graviton 430 —1444 | 424

All numbers should be divided by 1152072,

O
R™ + yRyyap lo0g (—) RHeP
N%) praf M?y

NB: they are calculated using
dim-reg.

(see e.g. Birrell and Davies, Quantum Fields in Curved Space-Time,
more recently Donoghue et al.)

* The Wilson coefficients of the local operators on the other hand are not
calculable: this the price to pay.

13



Green’s function

Varying with respect to the metric one obtains the 2-point function
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It 1s clear that it has more than one pole. Setting ¢,=0 for a moment:

qg; =0,

\ 1 1207

qo = =

< \ 1207 ’\I
NN W (_7737_)

i = (@),

Complex poles: EQG breaks down and potentially well below the Planck scale.
Sign of strong dynamics kicking in.

Plays an important role in unitarizing perturbative amplitudes in the large N (self-
healing)
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Poles and Quantum Black Holes?
It 1s tempting to interpret these poles as black hole precursors.
Inthe SM N, =4, N; = 45, and Ny = 12
We thus find
(7 — 31) x 1018 GeV and (7 + 3i) x 10'® GeV

using

py = (m —il'/2)?

The first one corresponds to a state with mass 7 x 108 GeV

and width 6 x 10'® GeV

Note that the 2" pole has the wrong sign for particle between the mass and
the width. -



Acausal versus nonlocal effects

* Remember that the 2" pole has the wrong sign between the mass and
width terms for a particle: it 1s a ghost.

* Acausal effects: connection to black hole information paradox? Could be
canceled by e.g. Lee and Wick’s mechanism.

* Acausal effects can be replaced by non local effects

S = /d“a:\/gj [Rlog (#—2) R] L(z,y) = (z[log (E]) Y)

by reinterpreting the log term (the non-local function can be calculated
using the Green’s function of the box operator).

* Can these effects soften singularities?
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Study of the EFT

Let me linearize the EFT

1
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* To identify the field content of the EFT, let’s calculate the Green’s
function expectation value between two conserved sources
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© where .2 — 397

* We see that:

— the 1% term corresponds to a massless spin-2 field: the “classical” graviton
— the 2™ term corresponds to a massive spin-2 field with an overall minus sign (ghost)
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— the 3" term corresponds to a massive spin-0 field
1

2 _
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e Note that this extends the classical result of Stelle.
e |t 1s crucial to realize that these are classical fields.



Universal features of quantum gravity

Using EFT techniques, we have 1dentified universal (model
independent) features of quantum gravity:

— The scale of quantum gravity 1s dynamical,

1207

GnyN
it depends on the number of fields in the theory.

— Strong interactions kick in at this energy scale.

— Space-time becomes non-local.

— There are three classical fields in the low energy regime of

quantum gravity. "



Lagrangian for low energy physics

It is easy to work out the coupling of the classical degrees of
freedom

1% 1 1% 1% (8 1%
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This can also be done without linearizing the theory by going to the
Einstein frame:
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We see that the “classical” graviton plays the role of the metric and
determines the geometry.

It couples 1n a universal manner to matter as usual (this 1s just GR).

The massive classical fields are not gravitational fields in the sense that
they do not affect the invariant length or geometry.

The coupling of the massive spin-2 object to matter is universal while
that of the massive spin-0 1s not: it does not couple to massless vector
fields as it couples to the trace of the energy-momentum tensor.



Classical fields

There are some interesting consequences if one tries to interpret these fields
as dark matter or inflaton: they are classical fields

— Is dark matter an emergent phenomenon?

— R? inflation: as the scalar field is purely classical it could lead to the expansion of the
universe but not to the density fluctuations, another field (maybe the Higgs field)
would be needed

As we are dealing with a classical field, the fact that the massive spin-2 is a
ghost 1s not an obvious problem, it simply means that it couples to matter
with a negative Planck mass.

We do not find any sign of instability.

As we shall see shortly, the massive spin 2 object simply leads to a repulsive
force.
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Eot-Wash pendulum experiment

C. D. Hoyle et al. Phys. Rev. D 70, 042004 (2004)
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Quantum gravity correction to
Newton’s Law

We can easily deduce the quantum gravitational corrections to the Newtonian
potential of a point mass

Gm 1 4
() = =S (14 Gt — Sy

Note that the imaginary parts of the masses cancel out.
There 1s no contradiction with Donoghue’s result.

In the absence of accidental fine cancellations between both Yukawa terms, the
current bounds imply m, , m, > (0.03 cm)~! = 6.6 x10-13GeV.

Note that the experiment performed by Hoyle et al. is probing separations between
10.77 mm and 137 pm, a cancelation between the two Yukawa terms on this range
of scales seems impossible without modifying general relativity with new physics

to implement a screening mechanism.
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Gravitational waves

The new classical fields could be produced in high energetic astrophysical or
cosmological events.

In binary system, only the massive spin-2 can be produced, it has 5 polarizations. As
the trace of the energy-momentum tensor is conserved the spin-0 cannot be produced.

In phase transitions, both the massive spin-0 and spin-2 modes could be produced.

There are thus three kinds of waves in quantum gravity: the massless gravitational
waves that have just been observed and massive waves.

We may have seen a superposition of these modes if the mass of the massive spin-2
mode i1s low enough.

Clearly there 1s enough energy in a typical merger:

36 Mg+ 29 My~ 62M+3M(gravitational wave)

3M corresponds to 3x10°7 GeV, detailed calculation is in progress.



The bound on the quantum gravitational corrections to Newton’s potential
imply that quantum gravity could only impact the final moments of the
inspiraling of binary of two neutron stars or of two black holes.

Their effect will only become relevant at distances shorter than 0.03 cm.

The quantum gravitational correction to the orbital frequency of a
inspiraling binary system is given by

Gm 1 4
2 = _—Re(mo)r T _—Re(ma)r
w” = 5 (1 + 36 0 36 2 )

Using the standard relation between energy and power, we can obtain the
quantum corrected frequency and quantum corrected amplitude:

fowlty = 49
Aaw(t) = 22X ool




* While it is easy to calculate {y, and Ay explicitly, it 1s clear that
the quantum gravitational corrections to the emission of
gravitational waves can only become relevant when the two objects
are closer than 0.03 cm

* This distance 1s well within the Schwarzschild radius of any
astrophysical black hole and clearly tools from numerical relativity
need to be employed to obtain a reliable computation.

* Maybe the situation is not so bad for black holes as the mass is
centered around the “singularity”.



Besides the usual massless gravitational waves, there are two new kind of
radiations, namely the massive spin-0 and spin-2.

They could be produced in energetic astrophysical or cosmological events.

However, in the case of a binary system, because the center of mass of the
system 1s conserved, the spin-0 wave cannot be produced.

On the other hand, the massive spin-2 could be emitted in the last moment
of a merger when the two inspiraling objects are closer than the inverse of
the mass of the massive spin-2 field.

A lengthy calculation leads to a remarkable result: the energy E carried
away by the massive spin-2 mode from a binary system per frequency is
1dentical to that of massless spin-2 mode:

dEmassive
dw

The total wave emission by a binary system 1s thus given by
dE . dEmassless + dEmassive

dw dw dw

G )
= 4;:7@6(@@@”}9@ — my)




The massive spin-2 wave will only be produced when the two black holes are
close enough from another.

If we denote the distance between the black holes of masses m, and mg by d, we
obtain the frequency of the inspiral w:
Gy (mA + mB)

d3

w2:

To estimate how close the two black holes have to be to generate enough energy
to produce a massive wave compatible the pendulum bound, we set w = (0.03

cm)~! and use the masses of the first merger observed by the LIGO collaboration
m, =36 M, mg = 29M..

We find that for a wave of mass (0.03 cm)~! to be produced the two black holes
would have to be at 16 cm from another.

Clearly this is again well within the horizon of any astrophysical black holes and
a reliable simulation will require a technically challenging simulation using
numerical methods.



However, our results demonstrate that massive spin-2 waves can be
produced in the merger of astrophysical objects such as black holes or
neutron stars and this effect must be taken into account in future numerical
studies.

Clearly the massive modes will only be produced in the final stage of the
inspiral process at the time of the merger and ringdown.

This represents a unique opportunity to probe quantum gravity with
astrophysical events in a fully non-speculative manner.



It 1s also possible to envisage the production of these new quantum
gravitational massive classical modes during first order phase transitions
if such phases took place early on in the cosmological evolution of our
universe.

Clearly, the occurrence of a first order phase transition in the early
universe 1s a speculative topic as there is no such phase transition within
the electroweak standard model.

Our work represents an additional complication for the study of early
universe phase transitions as beyond the massless gravitational waves,
the new massive modes could be produced.

Indeed, the collision of bubbles and damping of plasma inhomogeneities
could have generated a stochastic background of massive gravitational
waves beyond the massless ones that are expected.

This implies that some of the energy of these processes could be lost in
massive modes. This fact has been overlooked so far when doing
simulations for LISA



Summary of EQG and bounds on its parameters

* We can describe any theory of quantum gravity below the Planck
scale using effective field theory techniques:

S = /d4x vV —g [(%J\IQ + GHTH) R — At +aR* + R R*Y + Ly + O(M?)

* Planck scale (M?+ &)= Mp  Mp = 2.4335 x 10'® GeV
* Ac~10""2GeV; cosmological constant.
* M, > tfew TeVs from QBH searches at LHC and cosmic rays.
* Dimensionless coupling constants ¢, ¢, C,
— ¢; and ¢, <10°7 jxc s and Reeb 2008
R? inflation requires ¢;=9.7 X 102 rauikner et . astro-phios12569)).

— &_,< 2.6 X 101 ke & Atkins, 2013]

Higgs inflation requires {~10%.
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Singularities

* Within this framework, what can we say about singularities in
cosmology and black holes?

* Recently Donoghue and El-Menoufi have argued that the late time
singularity in FRLW cosmology could be avoided due to the non-

local operators we have discussed a0
T

~0.003 -

From 1402.3252 -0.010 -

— Quantum

— Classical

FIG. 7: Collapsing dust-filled universe with ur = 1 and a single scalar field. The time derivative of the scale factor quickly
stops diverging when the quantum correction becomes active.



Donoghue and El-Menoufi find that the big-crunch singularity
can be avoided for certain number of fields.

Singularity avoidance should be universal, would one avoid
them in black holes as well?



Quantum Corrections to Black Holes

* Black holes are amongst the simplest and yet most mysterious
objects 1n our universe.

* No-hair theorem implies that they are described by only a few
parameters: their masses, angular momenta and charges.

* Despite this apparent simplicity, they are incredibly challenging as
understanding their physics requires merging quantum mechanics
and general relativity.
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Investigating the effects of this non-locality in black hole physics is our
main motivation to consider quantum corrections to spherically
symmetric solutions in general relativity.

In particular, we revisit the issue of quantum corrections to the
Schwarzschild black hole solution which have been studied in the past
by Duff and Donoghue et al. .

We identify a complication which has not been realized previously,
namely that of how to define a black hole.



* A mathematically consistent way to define a black hole is to define it as
a static vacuum solution, 1.e., an eternal black hole.

* If this definition is adopted, we obtain a result that differs from previous
investigations.

* In particular, we will see that the classical black hole solution remains a
solution in quantum gravity up to quartic order in the non-local
curvature expansion.



While eternal black holes are mathematically well defined, they may not
capture the full physical picture.

A real, astrophysical, black hole is the final state of the evolution of a matter
distribution, for example of a heavy star, after it has undergone gravitational
collapse.

This process is certainly not happening in vacuum.

This raises the question of how to define a real astrophysical black hole and of
how to calculate quantum corrections to its metric.

A non-vanishing energy-momentum tensor could be used to model a collapsing
star.

At a time when the star has not yet collapsed into a black hole, the star can be
described as a static source at a specific time in its evolution.



Another complication appears due to the non-locality: we are forced to integrate
the modified equations of motion over regions of Planck size curvature.

One may thus worry about the sensitivity of the EFT to regions of space-time
with high curvature and, in particular, to the singularity at r = 0.

Clearly the effective field theory breaks down in regions of large curvature,
which in turn raises the question if the latter could offer a reliable picture in our
case.

However, the ultimate ultra-violet physics that dominates regions of large
curvature should not affect observables at long distances, i.e. the exterior region

of a black hole.

Indeed, in an EFT, one expects short distance physics to decouple at low
energies.

We are making this conservative assumption.



Quantum gravity corrections
to the equations of motion

We can now derive the equations of motion

Guw+Hu+H;, =0

where G, 1s the Einstein tensor, H, and H 9 represent respectively the
local and non-local parts of the quantum correction to the field equations.

1
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Absence of perturbative correction to
Schwarzschild black hole

e  We write the metric as follows

I = ng“c/h. + ggy

where gd represents the quantum correction to Schwarzschild solution.

 Linearizing the field equations around g>", one finds

G,lI;V [gq] + H/u/ [gSch.] 4 ng [gSch.] —0

where the linearized Einstein tensor reads.
e Itis well known that HW[gSCh] =0
* Alengthy calculation shows that H,, 9[g>"] = 0.

e There are no correction to Schwarzschild’s metric at 2" order in
curvature



While that there are no corrections at quartic order in curvature, which 1s in
sharp contrast with previous results, there will be corrections at higher
order for example higher dimensional operators such as

v Qo dy
C6R Qo 57R %

will lead to quantum corrections of the Schwarzschild solution.

We are doing perturbation around the standard Schwarzschild solution

Far away from the hole, we find 5767G3 M

-6
This simply demonstrates that the Schwarzschild solution is not a solution
of the field equations when higher dimensional operators of dimensions
d=6 are included.

h(r) = cg




Singularity avoidance?

An immediate consequence of our result 1s that the singularity
avoldance observed by Donoghue and El-Menoutfi is non-universal as
the very same operators do not cure the curvature singularity of an
eternal Schwarzschild black hole.

However, it 1s important to keep in mind that these results are obtained
in perturbation theory.

We have seen that there are indications that perturbation theory will
break down below the reduced Planck mass.

Strong dynamics is expected to resolve singularities.



Corrections to the gravitational field of
a static source

It 1s interesting to understand the effect of the quantum induced non-
locality on the field of a static spherically symmetric object such as a star.

]
We aim for a simplified treatment and thus we only consider a R In (—) R

112
We use a perturbative approach again compatible with our EFT approach.

g = —B(rdt* + A(rdr? + r?dQ?
The solution to Einstein equation for a constant density star is known in

closed form.
—1 r r
A(r) = [1 — 2G./:/l(r)] , M) =/ pde/ 4zr" p(r') dr.
0

B(r) = exp{ B /00 %[M(r'} + 4z P(rAG") dr’ }

In these equations p is the density of the star and P its pressure.



® Qutside the star, the non-locality introduces a non-trivial contribution

Gl = (167G (V,V, — D) [ d'a' VG Laa's) T

where the integral extends only over the source region,

T = p, — 3 P is the trace of the energy-momentum tensor, p, is the mass
density and P 1s the pressure.

* Both the pressure and metric functions are known in the interior of the

star
(1 —-2GMr?/R3)Y? — (1 —2GM/Rg)'/?

(1 — 2GM/Rs)"V? — 3(1 — 2G M2/ R%)1/2

P(r) = po

where Rg 1s the radius of the star.



Far away from the source, we find the leading correction

1804[1% QGNM q 12GNMOél]%
Y gI‘I‘ —
R?, r r3
Note that it is not possible to recover our previous result for an eternal
Schwarzschild black hole by taking the limit Rq = 0 as this limit is ill-defined.

a _
Jit —

This is not really a surprise!

In 1987 Geroch and Trashen have shown that in general relativity, the only
sensible delta-function sources in generally covariant theories are sources of
spatial codimension one.

So one cannot consider a point source as in the linearized theory.

Instead, the simplest source that one can consider in the full nonlinear theory is a
thin spherical shell of radius.

This 1s also a source of discrepancy with previous works that have considered
delta-functions as sources.



We have shown that the Schwarzschild black hole solution remains a solution
including non-local quantum corrections up to quadratic order in
curvatures.

Our findings emphasize the need to be very careful when discussing
quantum corrections to black holes which need to be defined carefully.

While, from a mathematical point of view, an eternal black hole is a static
vacuum solution, astrophysical black holes are not.

They are surrounded by matter and are themselves the result of the
gravitational collapse of matter.

Calculating quantum gravitational corrections to real astrophysical black
holes 1s thus a fantastically difficult task which cannot be done easily
analytically.



This investigation requires us to study a dynamical process where a
matter distribution, e.g., a star, collapses to form a black hole and to
follow quantum effects throughout the process.

Our work represents a first step in that direction.

We have found that an observer far away from a star experiences a
correction to Newton’s law that depends on the size of the star.

Long after the star has collapsed, the far field behavior of the remaining
object should approach that of an eternal black hole.

At this stage of the evolution, the observer would find only cubic order in
curvature corrections to Newton’s law.



Conclusions

We have discussed a conservative effective action for quantum gravity
(EQG) within usual QFTs such as the standard model or GUT.

EQG can make predictions which can be confronted to data.

We have seen some universal features of quantum gravity: the Planck
scale 1s dynamical, space-time becomes non-local at that scale & strong
dynamics at the Planck scale.

We have discussed a novel application to quantum corrections to black
holes and found new unexpected results.
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Conclusions

We have discussed a conservative effective action for quantum gravity
(EQG) within usual QFTs such as the standard model or GUT.

EQG can make predictions which can be confronted to data.

We have seen some universal features of quantum gravity: the Planck
scale 1s dynamical, space-time becomes non-local at that scale & strong
dynamics at the Planck scale.

We have discussed a novel application to quantum corrections to black
holes and found new unexpected results.

Thanks for your attention! h



