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The Vacuum State of a Quantum Field

No particles a(~k) |0i = 0

Vanishing expectation value h0|'(~x) |0i = 0

Non-vanishing correlations
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Entangled oscillators
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Entangled oscillators
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Entangled oscillators
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Thermal ensemble from entanglement

Entanglement entropy

S2 = �Tr(⇢2 log ⇢2)



The vacuum state of a quantum field is highly entangled



Squeezing the vacuum

examples:

  - Schwinger effect

  - Hawking radiation

  - Primordial density fluctuations



Squeezing the vacuum and entanglement entropy growth
Two new results:
    (1) Entanglement growth at instabilities
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linear growth: rate given by the sum of the positive Lyapunov exponents
Bianchi-Hackl-Yokomizo Phys.Rev D (2015)



Squeezing the vacuum and entanglement entropy growth
Two new results:
    (2) Entanglement growth at parametric resonances

linear growth: rate given by the sum of the positive Floquet exponents
Bianchi-Hackl-Yokomizo to appear (2016)
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Squeezing the vacuum

examples:

  - Schwinger effect

  - Hawking radiation

  - Primordial density fluctuations



Vacuum fluctuations are unstable in the presence of a strong electric field

Schwinger effect  (1951)
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Extraction of entangled pairs of electrons and positrons from vacuum fluctuations
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S(t) = Entanglement Entropy of Positrons

EB, Hackl and Yokomizo (2016)
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Hawking radiation  (1974)
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* emission of radiation

* energy conservation
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Vacuum fluctuations are unstable in the presence of a strong gravitational field

S(t) = Entanglement Entropy of Radiation
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48M

EB, Smerlak, Phys.Rev.D (2014)
EB, De Lorenzo and Smerlak, JHEP (2015)
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Hot Big Bang
Inflation

Planck Scale

CMB



           The vacuum of a quantum field before inflation
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           The vacuum of a quantum field after inflation

P (k) =
(aH)2

k 3ns
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Mukhanov-Chibisov (1981)
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Mechanism:  amplification of vacuum fluctuations by instabilities

Harmonic oscillator with 
time-dependent frequency
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           The vacuum of a quantum field after inflation













The anisotropies of the Cosmic Microwave Background  
as observed by Planck



ns = 0.965 ± 0.005

Planck Collaboration, arxiv.org/abs/1502.02114
``Planck 2015 results. XX. Constraints on inflation''

`
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ns = 0.965 ± 0.005

`
Planck Collaboration, arxiv.org/abs/1502.02114
``Planck 2015 results. XX. Constraints on inflation''
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Scenario:  correlations present at the beginning of inflation are produced 
                   during a pre-inflationary BKL phase via vacuum squeezing

Origin of primordial entanglement

BKL conjecture (Belinsky-Khalatnikov-Lifshitz 1970)

In classical General Relativity, the spatial coupling of degrees of freedom 
is suppressed in the approach to a space-like singularity

Quantum BKL conjecture (Bianchi-Hackl-Yokomizo 1512.08959)

In quantum gravity, correlations between spatially separated degrees of 
freedom are suppressed in the approach to a Planck curvature phase
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Motivated by the “architecture conjecture” (Bianchi-Myers, CQG 2013)



Origin of primordial entanglement

Pre-inflationary scenario:  
          BKL phase with entanglement entropy growing from a zero law to an area law
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EB, Hackl and Yokomizo 1512.08959
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PLANCK 2015 constraints on inflationary models
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As = (2.196± 0.05)⇥ 10�9{ns = 0.9603± 0.0073

r < 0.11 at k⇤ = (20Mpc)�1

quadratic potential

plateau potential

[Starobinsky 1979]



0.94 0.96 0.98 1.00
Primordial tilt (ns)

0.
0

0.
1

0.
2

0.
3

0.
4

T
en

so
r-

to
-s

ca
la

r
ra

ti
o

(r
)

Planck+WP+BAO: ⇤CDM + r

Planck+WP+BAO: ⇤CDM + r + (dns/d ln k)

0.94 0.96 0.98 1.00
Primordial tilt (ns)

0.0
0.1

0.2
Ten

sor-
to-s

cala
rra

tio(
r)

Planck TT,TE,EE+lowP:⇤CDM+r+Neff + meff
⌫, sterile

Planck TT,TE,EE+lowP:⇤CDM+r+Neff
Planck TT,TE,EE+lowP:⇤CDM+r

PLANCK 2015 constraints on inflationary models

0.94 0.96 0.98 1.00
Primordial tilt (ns)

0.
0

0.
1

0.
2

T
en

so
r-

to
-s

ca
la

r
ra

ti
o

(r
)

Planck TT,TE,EE+lowP:⇤CDM+r+Neff + meff
⌫, sterile

Planck TT,TE,EE+lowP:⇤CDM+r+Neff
Planck TT,TE,EE+lowP:⇤CDM+r

[1502.02114]

As = (2.196± 0.05)⇥ 10�9{ns = 0.9603± 0.0073

r < 0.11 at k⇤ = (20Mpc)�1

quadratic potential

plateau potential

[Starobinsky 1979]

derived from General Relativity 
with quantum corrections
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Slow-roll initial conditions in                   gravity R+ ↵R2

Action S =
1
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Classical FLRW background + quantum perturbation 

gµ⌫(~x, t) = ḡµ⌫(t) + �gµ⌫(~x, t)

Einstein equations
Gµ⌫ + ↵Hµ⌫ = 0

Gravity-driven inflation
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Planck 2015
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Pre-inflationary initial conditions in                   gravity R+ ↵R2

EB-Fernandez-Satz, in progress

Initial condition in post-Planckian phase

Rµ⌫⇢�R
µ⌫⇢� = 1/`40 with `P < `0 ⌧ 105 `P

Background:  select initial conditions s.t.                e-folds of slow-roll N � 60

Quantum perturbation:  scalar and tensor modes of the geometry
               local vacuum has low entanglement entropy at the curvature scale

Pre-slowroll phase produces Minkowskian correlations + squeezing

Expected enhancement of power in tensor modes at low `
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Pre-inflationary initial conditions in                   gravity R+ ↵R2

Rµ⌫⇢�R
µ⌫⇢� = 1/`40

`P < `0 ⌧ 105`P Planckian 
phase outside

EB-Fernandez (2016)



Pre-inflationary initial conditions in                   gravity R+ ↵R2

Rµ⌫⇢�R
µ⌫⇢� = 1/`40

`P < `0 ⌧ 105`P Planckian 
phase outside
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- reheating
- slow-roll inflation
- post-planckian BKL

EB-Fernandez (2016) Entanglement growth in the pre-inflationary phase
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