Advanced General Relativity:
Exercises

Luciano Rezzolla

Summer Semester 2017

Listed below are the exercises that have been assigned during the course and collected according to the lecture in which they were assigned. These exercises can be solved independently or together during the exercise time. Some of these questions could be part of the oral exam.
Lecture I

1. Prove the following relation holds for the Riemann tensor
\[3R_{[\beta \gamma \delta]} = R_{\alpha \beta \gamma \delta} + R_{\alpha \delta \beta \gamma} + R_{\alpha \gamma \delta \beta} . \] (1)

Next, using the Bianchi identities
\[\nabla_{[\alpha} R_{\beta \gamma \delta] \mu \nu} = 0 = \nabla_{\alpha} R_{\mu \nu [\beta \delta} , \] (2)
show there exists a tensor
\[G^{\alpha \beta} := R^{\alpha \beta} - \frac{1}{2} g^{\alpha \beta} R , \] (3)
where \(R_{\alpha \beta} := R^{\mu}_{\alpha \mu \beta} \) and \(R := R^{\alpha}_{\alpha} \) are respectively the Ricci tensor and Ricci scalar and such that
\[\nabla_{\alpha} G^{\alpha \beta} = 0 . \] (4)

2. Prove that if \(\xi \) is the separation four-vector between two neighbouring geodesics with tangent vector \(u \), then the following expression can be derived
\[\nabla_u \nabla_u \xi^\alpha = -R^{\alpha}_{\beta \mu \nu} u^\beta \xi^\mu u^\nu . \] (5)
This is known as the geodesic-deviation equation.

3. Optional. Consider the Einstein equations written generically as a tensor expression equating geometry and energy, i.e.,
\[G_{\alpha \beta} + \kappa_1 \Lambda g_{\alpha \beta} = \kappa_2 T_{\alpha \beta} , \] (6)
where \(\kappa_1 \) and \(\kappa_2 \) are two generic constant and \(\Lambda \) the cosmological constant. Show that the matching with the Newtonian limit yields
\[G_{\alpha \beta} + \Lambda g_{\alpha \beta} = \frac{8 \pi G}{c^4} T_{\alpha \beta} . \] (7)

Lecture II

1. Show that when using the Lagrangian
\[2L = \mathcal{L}^2 = g_{\mu \nu} \dot{x}^\mu \dot{x}^\nu , \] (8)
where \(\dot{x}^\mu = dx^\mu / d\lambda \) and \(\lambda \) is the affine parameter of a massive particle, the Euler–Lagrange equations
\[\frac{\partial L}{\partial x^\mu} - \frac{d}{d\lambda} \left(\frac{\partial L}{\partial \dot{x}^\mu} \right) = 0 , \] (9)
yield the geodesic equations
\[\ddot{x}^\alpha + \Gamma^\alpha_{\mu \nu} \dot{x}^\mu \dot{x}^\nu = 0 . \] (10)
2. Using an affine parameter $\lambda = \tau/m$, where m is the mass of the particle, show that the Lagrangian (8) relative to a Schwarzschild spacetime and the Euler–Lagrange equations yield the following geodesic equations

$$
\frac{d}{d\tau} \left[\left(1 - \frac{2M}{r} \right) \frac{dt}{d\tau} \right] = 0 ,
$$

(11)

$$
\frac{d}{d\tau} \left[\left(1 - \frac{2M}{r} \right)^{-1} \frac{dr}{d\tau} \right] = r \left[\left(\frac{d\theta}{d\tau} \right)^2 + \sin^2 \theta \left(\frac{d\phi}{d\tau} \right)^2 \right] - \frac{M}{r^2} \left[\left(\frac{dt}{d\tau} \right)^2 + \left(1 - \frac{2M}{r} \right)^{-2} \left(\frac{dr}{d\tau} \right)^2 \right],
$$

(12)

$$
\frac{d}{d\tau} \left(r^2 \frac{d\theta}{d\tau} \right) = r^2 \sin \theta \cos \theta \left(\frac{d\phi}{d\tau} \right)^2 ,
$$

(13)

$$
\frac{d}{d\tau} \left(r^2 \sin^2 \theta \frac{d\phi}{d\tau} \right) = 0 .
$$

(14)

3. Show that the constant of motions given by the covariant components of a particle’s four-momentum p_t and p_ϕ represent the energy at infinity and the specific angular momentum, respectively.

4. Optional. Show that the lowest specific angular momentum allowing for the existence of circular orbits is $\tilde{\ell}^2 := (\ell/m)^2 = 12M^2$. Calculate the radii of the corresponding stable and unstable circular orbits.

Lecture III

1. Show that when considering the Lagrangian

$$
2L = g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu ,
$$

(15)

for a massive particle of mass m, the following identity holds

$$
L = -\frac{1}{2} m^2 .
$$

(16)

2. Derive the values of the specific angular momentum and specific energy for a massive particle in a circular orbit around a Schwarzschild spacetime.

3. Derive the values of the specific angular momentum relative to the marginally bound orbit for a massive particle in a Schwarzschild black hole.

4. Optional. Calculate the expression of the tetrad components carried by a Zero Angular Momentum Observer (ZAMO).
Lecture IV

1. A particle with rest mass \(m \) and four-momentum \(p = mv \) is analysed by an observer with four-velocity \(u \).
 - Compute the total energy \(E \) of the particle.
 - Compute the kinetic energy \(E_K \) of the particle.
 - Compute the magnitude of the spatial momentum \(p := \sqrt{p^i p_i} \).
 - Compute the magnitude of the three velocity \(v := \sqrt{v^i v_i} \).

2. Define the four-acceleration of a particle with four-velocity \(u \) as

\[
a^\mu := \frac{du^\mu}{d\tau},
\]

where \(\tau \) is the proper time. Show that \(a \cdot u = 0 \), i.e., the acceleration is orthogonal to the four-velocity. What does this mean in a frame comoving with the particle?

3. Consider a photon emitted by a static observer in a Schwarzschild spacetime and propagating in the direction \(k \). Let \(\psi \) be the angle between the direction of propagation of the photon and the unit radial four-vector of the tetrad carried by the static observer. Compute at what angles an ingoing photon should be fired to reach infinity if the observer is at \(r = 6M, r = 3M \) and \(r = 2M \). Repeat the considerations for an outgoing photon. Draw a sketch to illustrate the behaviour.

Lecture V

1. Show that the frame-dragging angular in a Kerr spacetime is given by the expression

\[
\Omega (r, \theta) := \frac{p^\phi}{p^t} = \frac{2Mr a}{(r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta},
\]

Further show that the angular velocity of a massive particle is constrained to be

\[
\Omega_{\min} \leq \Omega \leq \Omega_{\max},
\]

where

\[
\Omega_{\min,\max} := \omega \mp \sqrt{\omega^2 - g_{00}/g_{\phi\phi}}.
\]

Plot these two angular velocities for different values of the spin parameter. What is the angular velocity of the horizon?
2. Show that the specific energy and specific angular momentum for circular orbits of massive particles in a Kerr spacetime are given by

\[\tilde{E} = \frac{r^2 - 2Mr \pm a\sqrt{Mr}}{r\left(r^2 - 3Mr \pm 2a\sqrt{Mr}\right)^{1/2}}, \]

\[\tilde{\ell} = \pm \frac{\sqrt{Mr} \left(r^2 \mp 2a\sqrt{Mr} + a^2\right)}{r\left(r^2 - 3Mr \pm 2a\sqrt{Mr}\right)^{1/2}}, \]

where the ± signs refer to corotating and counterrotating particles, respectively.

3. Optional. Compute the expression for the Keplerian angular velocity for a massive particle in a Kerr spacetime and the corresponding specific angular momentum.

Lecture VI

1. Using the following definition of the surface gravity \(\kappa \)

\[\xi^\alpha \nabla_\alpha \xi^\beta = \kappa \xi^\beta, \] \hspace{1cm} (21)

calculate \(\kappa \) for a Schwarzschild and for a Kerr black hole.

2. If \(A_{BH} \) is the area of a Kerr black hole of mass \(M \) and spin \(a = J/M \), show that the requirement of the increase in the area can still be satisfied by transformations in which both the mass and the spin of the black hole decrease, i.e.,

\[\delta A_{BH} > 0 \iff \frac{M \delta M}{a \delta a} > 1. \]

Lecture VII

1. Derive the TOV equations describing equilibrium configurations of relativistic static and spherically symmetric stars

\[\frac{dm}{dr} = 4\pi r^2 e, \] \hspace{1cm} (22)

\[-(e + p) \frac{d\phi}{dr} = \frac{(e + p)(m + 4\pi r^3 p)}{r(r - 2m)} = \frac{dp}{dr}. \] \hspace{1cm} (23)

2. Compute the solution for the metric functions and pressure profile of a constant-density relativistic star. Express the radius as a function of the central properties of the star; what general conclusion can you draw?
Lecture VIII

1. Show that for a perfect but anisotropic fluid with energy-momentum tensor in the comoving frame given by

\[
(T_{\mu \nu})_{\text{anisotropic}} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & p_r & 0 & 0 \\
0 & 0 & p_t & 0 \\
0 & 0 & 0 & p_t \\
\end{pmatrix},
\]

the hydrostatic-equilibrium equation is changed to

\[
dp_r dr = -\frac{(e + p_r)(m + 4\pi r^3 p_r)}{r(r - 2m)} + \frac{2(p_t - p_r)}{r},
\]

where \(p_r, p_t\) are the radial and tangential pressures, respectively. Explain how the tangential pressure is computed.

2. Starting from the generic diagonal line element in spherical symmetry written in the form

\[
ds^2 = -a(r,t)^2 dt^2 + b(r,t)^2 dr^2 + R^2 (d\theta^2 + \sin^2 \theta d\phi^2),
\]

re-derive equations (124)–(129) appearing on page 61 of the lecture notes. These equations are also known as the “Misner-Sharp” equations and they represent the simplest formulation of the Einstein equations in spherical symmetry.

3. Show that under the assumptions that the fluid is homogeneous but not pressureless \((D_r p = 0, p \neq 0)\), the Misner-Sharp equations lead to the Friedmann equations

\[
\ddot{S} + \frac{4\pi}{3} (e + 3p) S = 0,
\]

\[
S^2 - \frac{8\pi}{3} e S^2 = -\kappa,
\]

where \(S\) and \(\kappa\) are the conformal spatial factor and the curvature constant of the Friedmann-Robertson-Walker line element

\[
ds^2 = -dt^2 + S^2 \left(\frac{dr^2}{1 - \kappa r^2} + r^2 d\Omega^2 \right).
\]

Lecture IX

1. If \(A\) is the area of a swarm of radially outgoing photons inside a collapsing dust cloud (OS collapse), show that

\[
\frac{dA}{d\eta} \leq 0,
\]
is equivalent to the condition
\[\eta_e \geq \pi - 2\chi_e, \quad (27) \]
where \(\eta_e \) and \(\chi_e \) are the time and position of emission and where we have written the interior line element as
\[ds^2 = -d\tau^2 + S^2 \left[d\chi^2 + \sin^2 \chi \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right]. \quad (28) \]

2. Use the following definitions
\[C_e := \int_0^{2\pi} \sqrt{g_{\phi\phi}} d\phi, \quad C_p := 2 \int_0^\pi \sqrt{g_{\theta\theta}} d\theta, \quad (29) \]
for the equatorial and polar proper circumferences of the event horizon of a Kerr black hole. Show that \(C_p/C_e = 1 \) for \(J/M^2 = 0 \), but that \(C_p/C_e \neq 1 \) for \(J/M^2 \neq 0 \). Derive the generic expression for \(C_p/C_e \) and compute it in the case of an extremal Kerr black hole (\(J = M^2 \)).