Black hole variability: from Galactic center to microquasars

Frédéric VINCENT¹

¹Centrum Astronomiczne M. Kopernika, Warsaw, Poland

Black hole variability

Frédéric VINCENT

э

1 Variability: Sgr A*, microquasars

2 Constraining Sgr A* flare models with GRAVITY

3 Modeling microquasars QPOs: oscillating torus model

4 Conclusion

□ > < □ > < □ >

S-stars cluster (Gillessen et al. 2009): size = $1" \approx 0.05 \, pc$

Innermost Galactic center: Sgr A*

• Astrometric measurements of S-stars \rightarrow central mass.

• Sgr A* pprox SMBH of 4.3 10⁶ M $_{\odot}$, $heta_{
m app} pprox$ 50 μ as

ヘロン ヘアン ヘビン ヘビン

ъ

Accretion structure

- Accretion disk / torus?
- Radiation from Sgr A* originates there

ヘロン 人間 とくほ とくほ とう

æ

Microquasar

Credit R. Hynes

The central dark mass

• Central BH \approx 10 M $_{\odot}$, $\theta_{\rm app} \approx 10^{-5} \ \mu {\rm as}$

ヘロン ヘアン ヘビン ヘビン

æ

GC flare : flare light curve (Hamaus+09)

Variability: data

- Light curve / power spectrum
- Characteristic time scales with BH mass:
- $T_{\rm ISCO} \propto M \approx 30 \, {\rm min} 1 \, {\rm ms}$

Black hole variability

Today's topics

- What can GRAVITY tell us about Sgr A* flares?
- How to make double-peak QPOs with an accretion torus?

프 🕨 🗉 프

▲ □ ▶ ▲ 三 ▶ ▲

Constraining Sgr A* flare models with GRAVITY

3 Modeling microquasars QPOs: oscillating torus model

4 Conclusion

(過) (ヨ) (ヨ)

æ

GRAVITY

VLT four main telescopes will be combined by GRAVITY

• First light May 2015!

æ

GRAVITY's astrometric performance

- Goal for astrometric precision: \approx 10 μ as \approx black hole apparent size \approx a coin on the Moon...
- Integration time needed: a few minutes

So what?

- Follow the motion of a source very close to Sgr A*
- Can such a precision be achieved?
- Can GRAVITY help understand what GC flares are?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Astrometric precision with a single source in the field

Errors in the direction of the major and minor axes of the PSF

GRAVITY has access to Schwarzschild radius scale astrometry

 \rightarrow Vincent et al. 2011 MNRAS 412 2653

프 🖌 🛪 프 🕨

ъ

Competing models for Sgr A* flares

Plasmon

[Van der Laan, 1966; Yusef-Zadeh et al., 2006]

Jet

[Falcke & Markoff, 2000; Markoff et al., 2001]

Hot spot

[Genzel et al., 2003]

Multi-resonance

[Kotrlova et al., 2013]

Rossby wave

[Tagger & Melia, 2006; Falanga et al., 2007]

Red noise

[Do et al., 2009]

ヘロン 人間 とくほ とくほ とう

æ –

Three astrometric classes of models

- circular, confined single-source motion [hot-spot, Rossby wave]
- complex multi-source motion [red noise]
- Inear, large-scale motion [plasmon,jet]

Question

• Can GRAVITY distinguish these classes?

ъ

Three models

- Rossby wave: hydro, 2D disk, pseudo-Newtonian potential, synchrotron emission [P. Varniere]
- **Red noise**: MHD, 3D vertically-averaged disk, pseudo-Newtonian potential, Novikov-Thorne emission [P. Armitage]
- **Ejected blob**: MHD, axisymmetric 3D blob ejection, pseudo-Newtonian potential, synchrotron emission [F. Casse]

Observation simulation

- Using GYOTO to ray-trace light curves
- Using GRAVISIM to simulate GRAVITY data

gyoto.obspm.fr

イロト イポト イヨト イヨト

Rossby Wave

Black hole variability

・ロト・四ト・モート ヨー うへの

Red Noise

16/30

Frédéric VINCENT Black h

Black hole variability

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Black hole variability

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

1 night GRAVITY observation: Rossby / Red Noise / Blob

• 45° inclination, $m_{\rm K} = 14$

▲ 臣 ▶ ▲ 臣 ▶ …

3

Dispersion of retrieved positions

• Inclination: 5°, 45°, 85° inclination, $m_{\rm K} = 14$, $\Delta t = 2 h$

イロン 不得 とくほ とくほ とうほ

Section conclusion

- GRAVITY can distinguish an ejected blob from "disk-glued models"
- This is valid for a typical flare ($m_{\rm K} = 15, \ \Delta t = 1 \ {\rm h} \ 30$)
- First possibility to start distinguishing flare models

 \rightarrow Vincent, Paumard, Perrin, Varniere, Casse, Eisenhauer, Gillessen, Armitage, submitted to MNRAS

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

Variability: Sgr A*, microquasars

2 Constraining Sgr A* flare models with GRAVITY

3 Modeling microquasars QPOs: oscillating torus model

4 Conclusion

(過) (ヨ) (ヨ)

æ

Strohmayer (2001) - GRS1915+105

Double-peak QPO

- 3:2 resonance in some microquasars
- Natural idea: two oscillation modes of a resonating cavity
- Cavity = accretion torus
- Works: Abramowicz & Kluźniak, Rezzolla, Zanotti, Blaes...

Polish doughnut (Abramowicz et al. 78)

A simple model of accretion torus

- Polish doughnuts [Abramowicz et al. 1978]
- Oscillation modes of Polish doughnuts: Blaes et al. 2006, Straub & Sramkova 2009
- Everything known analytically

Question

What is the observable signature of an oscillating Polish doughnut?

Blaes et al. 2006

Five lowest order modes for slender tori

- Vertical, X modes (constant emitting area)
- Radial, Plus and Breathing modes (varying emitting area)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

Torus oscillations: 85° inclination, Schwarzschild

Plus, Breathing modes

₹ 990

ヘロン 人間 とくほ とくほ とう

Power spectra, Schwarzschild

- Inclination 5°, 45°, 85°
- Radial, Vertical, X, Plus, Breathing
- Radial and Plus are in 3:2 ratio

イロト 不得 とくほ とくほとう

ъ

Power spectra, Extreme Kerr

- Inclination 5°, 45°, 85°
- Radial, Vertical, X, Plus, Breathing
- Radial and Plus are in 3:2 ratio

イロト 不得 とくほと くほとう

ъ

To conclude

- Different modes / *i* / *a* lead to very different PSD
- 3:2 resonance? Rad./plus, vert./breathing, rad./vert.
- Models must explain differences of power (ray-tracing!)

Future

- Comparison to GRMHD simulations of perturbed tori
- Predict some model-specific observable features (LOFT?)

 \rightarrow Vincent, Mazur, Straub, Abramowicz, Kluźniak, Török, Bakala, A&A just accepted

< 回 > < 回 > < 回 > .

Variability: Sgr A*, microquasars

2 Constraining Sgr A* flare models with GRAVITY

3 Modeling microquasars QPOs: oscillating torus model

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

• Sgr A* flares:

- Today: impossible to distinguish models
- With GRAVITY: will distinguish an ejected blob

QPOs:

- 3:2 resonance natural feature of torus model
- Importance of ray-tracing in PSD calculation
- Needs more work to compare to data (and instrument!)

Conclusion

• Sgr A* flares:

- Today: impossible to distinguish models
- With GRAVITY: will distinguish an ejected blob

QPOs:

- 3:2 resonance natural feature of torus model
- Importance of ray-tracing in PSD calculation
- Needs more work to compare to data (and instrument!)

Thanks for your attention!