Neutrino-Driven Turbulent Convection in Stalled Supernova Cores

David Radice

Collaborators: E. Abdikamalov, S. Couch, R. Haas, C. Ott, E. Schnetter

Contents

1. Turbulence in core-collapse supernovae

2.Numerical simulations

3.Conclusions

Contents

1.Turbulence in core-collapse supernovae

2.Numerical simulations

3.Conclusions

The Supernova Problem

Cassiopeia-A

Core-Collapse Supernovae:

- End of massive stars
- Birthplace of heavy elements, neutron stars, black holes ...
- Regulate star formation

Problem: how do they explode?

Core-Collapse Supernovae

Onion-chall ctructure of nre-collence cter

(layers not drawn to scale)

From Janka et al. 2012

Shock Revival by Neutrinos

From Janka 2001

The Roles of Turbulence

Difficult to simulate!

Turbulent Pressure

Rankine-Hogoniot jump condition:

$$\rho_d v_d^2 + p_d = \rho_u v_u^2 + p_u$$

$$p_d = (\gamma_{\rm th} - 1)\rho_d\epsilon_d \qquad \gamma_{\rm th} \simeq \frac{4}{3}$$

 $\gamma turb > \gamma th$

Effect of downstream turbulence (Murphy et al. 2013):

$$\rho_d v_d^2 + p_d \to \rho_d \bar{v}_d^2 + \rho_d (\delta v)_d^2 + p_d$$

EOS:

Turbulence can be modeled with an effective EOS

$$\rho_d(\delta v)_d^2 \leftrightarrow (\gamma_{\text{turb}} - 1)\rho_d \epsilon_{\text{turb}} \qquad \gamma_{\text{turb}} \simeq 2$$

Jump conditions for a shock with downstream turbulence:

$$\rho_d \bar{v}_d^2 + (\gamma_{\text{turb}} - 1)\rho_d \epsilon_{\text{turb}} + (\gamma_{\text{th}} - 1)\rho_d \epsilon_d = \rho_u v_u^2 + p_u$$

Contents

1. Turbulence in core-collapse supernovae

2.Numerical simulations

3.Conclusions

Resolution Dependance

ULR	3.78 km
LR	1.89 km
MR	1.42 km
IR	1.24 km
HR	1.06 km

Resolutions

Explosion more difficult at higher resolution!

Why?

- Lower resolution favors the formation of larger, longer lived structures
- Secondary instabilities (Kelvin-Helmholtz) is suppressed by numerical viscosity
- When is the resolution good enough?

Turbulent Cascade II

Adapted from Frisch 1996

Kolmogorov 1941: $\Pi \simeq \text{const} \implies E \sim k^{-5/3}$

The Water-Spill Analogy

Adapted from Boris 1992

The Bottleneck Effect

Energy Cascade: PPM

Turbulent Energy Spectrum

Semi-Global Convection Study

Convective Instability

Radial Reynolds Stresses

Not Quite There Yet

A New Ingredient: Intermittency I

Turbulent energy density

Tangential Reynolds stress

Shock radius evolution

Contents

1. Turbulence in core-collapse supernovae

2.Numerical simulations

3.Conclusions

Conclusions

- Turbulence: crucial role for supernova explosions
- Local simulations: very high resolution is needed
- Idealized global simulations: rich dynamics of turbulent convection

The Standing Shock Flow

Initial Data

Stationary initial data