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The Supernova Problem

Cassiopeia-A

Core-Collapse Supernovae: 

• End of massive stars 

• Birthplace of heavy elements, 
neutron stars, black holes …  

• Regulate star formation 

• …

Problem: how do they explode?



Core-Collapse Supernovae
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From Janka et al. 2012



Shock Revival by Neutrinos

From Janka 2001



The Roles of Turbulence

Regulates accretion

Turbulent pressure

Transports heat

Increase dwelling time

Difficult to simulate!



Turbulent Pressure
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Rankine-Hogoniot jump condition:

EOS: 

Effect of downstream turbulence (Murphy et al. 2013):

Turbulence can be modeled with an effective EOS

Jump conditions for a shock with downstream turbulence:
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> �th !
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Resolution Dependance
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Resolutions

Explosion more difficult at higher resolution!



Why?

• Lower resolution favors the formation of larger, 
longer lived structures 

• Secondary instabilities (Kelvin-Helmholtz) is 
suppressed by numerical viscosity 

• When is the resolution good enough?



Turbulent Cascade I

Energy flux

Energy dissipationSpecific kinetic energy

@tE + @k⇧ = �2⌫k2E + ✏

Energy injection



Turbulent Cascade II

Adapted from Frisch 1996

2⌫k2E

@k⇧

✏

Kolmogorov 1941: ⇧ ' const =) E ⇠ k�5/3



The Water-Spill Analogy

Adapted from Boris 1992

222 f.P. Boris et al. / Large eddy simulations

:_ Navier-Stokes
"inertial range"

( a)

I
.. I

MILES with Built-in
Subgrid Model

Conventional LES

Fig. 8. LES water-spill analogy.

(b)

(c)

faster so the mass flow past any radius is constant. Increasing radius away from the center of
the table is analogous to increasing wavenumber of the eddies in a turbulent cascade. The
decreasing depth of the water is analogous to the decreasing energy content in each
wavelength scale of the turbulence. The incompressibility of the water gives effectively the
same influence at a distance that the nonlocal interaction of disparate scales does in
considering turbulence. The inertial range of the turbulent cascade is represented by the
region between the vertical dashed lines where the profile is smoothly decreasing in fig. 8a.
The radius of the table and how the water eventually falls off the table is analogous to the
viscous dissipation of turbulent energy at the Kolmogorov scale in very high Re flows. This
dropoff clearly does not significantly affect the depth of the water near the center of the table.
In this hydrodynamic analogy, different possible contours at the edge of the table correspond
to the different properties of various high Re Navier-Stokes models, conventional filtered
LES models, and MILES models.
In MILES models based on monotone convection algorithms, the nonlinear flux limiter

acts as a built-in subgrid model coupled intrinsically to the short wavelength errors in the
solution. Turbulent energy reaching the grid scale is extracted from the calculation and
converted to the correct conserved quantities. This has the effect of curving the table edge
sharply downward, as illustrated in fig. 8b, so that the water can flow smoothly off at a finite
radius without significant perturbations reaching the center of the table. The dissipation in
MILES algorithms is physically matched to the grid-scale errors to minimize effects on long
wavelengths which are accurately resolved.
With conventional, high-order CFD algorithms which are not monotone, dissipation is

added through the physical viscosity. Thus a blocking or damming up phenomenon [13] occurs

Numerical viscosity

Navier-Stokes

Finite Volumes

✏

2⌫k2E

@k⇧

Bottleneck: water piles up
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Bottleneck
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Need very high resolution!!!



Turbulent Energy Spectrum
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Semi-Global Convection Study
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APPENDIX

A. PARAMETRIZED NUCLEAR DISSOCIATION TREATMENT

Nuclear dissociation is included in a parametrized way using an approach similar to the one of Fernández & Thompson
(2009b,a), but with some important differences discussed here.

Fernández & Thompson (2009b) suggested to parametrize the amount of specific internal energy lost to nuclear dissociation,
✏ND, as a fraction, ✏̄, of the free-fall kinetic energy at the initial location of the shock:

✏ND =
1
2
✏̄ �2

FF, (A1)

where �FF is the free-fall velocity at the initial location of the shock. In the relativistic case this translates to

✏ND = ✏̄ (WFF - 1), (A2)

where WFF is the free-fall Lorentz factor (see Appendix B). A typical range of values for ✏̄ is 0.2 - 0.4 (Fernández & Thompson
2009a).



Convective Instability
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Radial Reynolds Stresses
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Not Quite There Yet
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A New Ingredient: 
Intermittency I
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A New Ingredient: 
Intermittency II
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Conclusions

• Turbulence: crucial role for supernova 
explosions 

• Local simulations: very high resolution is 
needed  

• Idealized global simulations: rich dynamics of 
turbulent convection





The Standing Shock Flow

From Janka 2001



Initial Data
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