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Galaxies merge!



  

Formation of SMBH binaries

Benson 2013

Farris et al 2011

Begelman et al  1980



  

Astrophysical evidence

● SMBHs grow through accretion & merger

● SMBHs accrete & shine throughout cosmic evolution
→ SMBH merger with EM counterpart 

Observational facilities:

● GWs: Pulsar Timing Arrays ~2017, eLISA 2032+ 

● EM transients: e.g. PanStarrs, WFIRST, LSST



  

EM counterparts

● BHBH in vacuum: well understood system

● Now: BHBH in (magnetized) gaseous environments

● Goal: Identify EM counterpart

● Precursor (periodicities, jets, fainting, ...)

● Afterglow (merger aftermath, rebrightening, …)

→ Need source modeling! Know what to look for!



  

THICK diskthin disk

→ Geometrically thick
→ Optically thin (transparent)
→ Hot
→ Outflows, Jets, Winds
→ non-thermal spectrum

→ Geometrically thin
→ Optically thick (opaque)
→ Cold
→ Truncated near BH?
→ thermal spectrum

Refs: Shakura & Sunyaev 1973
Novikov & Thorne 1974

Refs: Narayan & Yi 1994
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Binary-disk decoupling

● Disc dynamics 
determined by interplay 
between viscous and 
binary tidal torque

● Equate disk response 
(→viscous) time scale
with inspiral rate 
(→GW time scale)

● solve for separation
→ decoupling radius

Predecoupling

Postdecoupling

INSPIRAL
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Magneto-rotational instability (MRI)

● disk embedded in a weak magnetic 
field is 
stable to the MRI 
if and only if:

→ non-linear outcome is 
MHD turbulence

● On average the turbulence acts 
like an effective source of 
viscosity

● Viscous torques redistribute 
angular momentum 
→ causes accretion



  

Length and time scales: 
Computational Challenge

→ Adaptive-Mesh-Refinement (AMR)



  

Previous numerical work 
(very abbreviated, see papers)

Hydro (B=0):
Newtonian (SPH): Artymowicz & Lubow 1994, Cuadra et 

al 2008, Roedig et al 2011, 2012 
MacFadyen et al 2008

GR: Farris et al 2011, Bode et al, Bogdanovic et al
Force-free (all in GR):
Palenzuela et al 2010

Moesta et al 2010, Alic et al  2012
MHD:

 Shi 2011 (Newtonian)
Noble et al 2012 (Post-Newtonian)

Farris et al 2012, Gold et al 2013,2014 (GR)



  

Modeling of circumbinary disks

Palenzuela 
et al 2010

Alic 
et al 2012

Farris et al 2012 Gold et al 2014

`

Moesta et al 2012

Noble et al 2012Shi et al 2011Artymowicz 
et al 1994

MacFadyen
et al 2008



  

Methods (I): Numerical Relativity

● 3+1 split (foliate spacetime)

● Initial data: 
Conformal-Thin-Sandwich Formalism
→ quasi-equilibrium data
→ helical Killing vector

● Predecoupling:
Analytically rotate CTS metric ID

● Postdecoupling:

BSSN formulation

“moving punctures” gauge conditions

→ system is strongly hyperbolic
→ Vacuum Cauchy Problem is well-posed
→ Slices penetrate horizons
→ Singularities at origin can be handled



  

Methods (II): ideal GRMHD
Illinois GRMHD AMR code

● Perfect fluid stress energy tensor

● Eom: Conservation laws (incl. cooling)

● Induction equation for A-field

● Generalized Lorenz gauge condition



  

Methods III: Generalized Lorenz gauge

● Previously used gauge 
conditions have zero 
speed modes

● Lorenz gauge modes 
propagate at c *

● Generalized Lorenz gauge 
damps gauge modes to 
zero *
→ * Reduce spurious 
generation of B-field near 
AMR boundaries

● Crucial for long-term 
simulations

Etienne et al 2012, Paschalidis et al 2012Farris et al 2012



  

Method (III): Artificial Cooling

●  Realistic cooling depends on detailed microphysics
●  Consider two extreme opposite limiting cases

(I) no-cooling
(II) radiate away all shock generated entropy

on a local Keplerian time scale

→ Bracket real situation by two limiting cases
EOS: Ideal Gamma-law



  

Surface density profiles



  

RESULTS



  

Importance of magnetic fields

Pure hydro Magnetized

→ accretion / luminosities underestimated 
     by orders of magnitude!

→ can't ignore magnetic fields!

Gold et al 2013



  

1:10 (no-cooling)

● Refilling of gap/cavity

● Binary fully 
emersed in highly 
magnetized gas

● Densest gas is 
near the (smaller) 
horizon

Gold et al 2013
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predecoupling Just after merger

Gold et al 2014REU team: Taylor, Kong, Khan, Connelly, Kim, Walsh



  



  

Outflows

→ highly magnetized, relativistic outflows

Gold et. al. 2014

Density (log scale) Magnetic pressure/
Density (log scale)



  

Transient jet feature around merger

Gold et al 2014

AFTER MERGER:

Enhanced collimation
Increase in magnetic energy in outflows
Speed up of outflow



  

Accretion rates / Luminosities

→ Mass accretion rates: 
comparable to single BH case

→ EM+KIN Luminosities:
Characteristic rises/peaks 
just after merger
L_cool > L_kin > L_EM

→ GW amplitude: 
     well known chirp

→ Cooling luminosity: 
     not sensitive to mass ratio
     (except 1:1 predecoupling)

Gold et al 2014

Colors: Binary mass-ratio 1:1, 1:2, 1:4 



  

Variability

● far from clean (compare to 
2D-thin disk studies)

● Not necessarily at binary 
orbital period

● Highest variability at 
intermediate mas ratios 
(confirming  d'Orazio, 
Haiman et al)

● Little variability at larger 
mass ratios (as expected: 
→ single BH limit)



  

Conclusions

✔ Predecoupling: 

high accretion rates, dense material remains 
near horizons, persistent jets

✔ inspiraling and merger:

Luminosity peaks/rises, enhanced jet collimation
✔ First GRMHD parameter study: 

binary mass ratio, e.g. 1:10 cavity refills

→Now: Time for more physics !

Farris et al 2012 
Gold et. al. 2014

Gold et. al. 2013

Gold et. al. 2013



  

The next steps...

✗ Radiative transport (synchrotron, Compton) 
...in progress...

✗ Rebrightening (viscous refilling of the hollow) 
...in progress...

✗ BH spins 
...in progress...
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Thank you for your attention!
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