Methods for simulating starquakes in neutron stars

Stephanie J. Erickson

University of Southampton

22 July 2014

see C. Gundlach, I. Hawke, and SJE, CQG 29 015055 (2012)
Astrophysical motivation

- NS has crust
- Crust breaks
 - spindown
 - magnetic fields
 - tidal forces
- Starquakes observable
 - precursors to sGRB’s
 - pulsar glitches

Goal: Investigate dynamics of neutron star quakes
Technical aspects to address:

- Elasticity
- Interfaces
- Stellar surface
- Starquakes
Elasticity formulation
Elasticity formulation
Motivation Elasticity Interfaces Atmosphere Treatment Starquake mechanisms 2D Toy Model Future work

Elasticity formulation

- Map $\chi : \text{spacetime} \rightarrow \text{matter-space}$

- *Configuration gradient:*

 $$\psi^A{}_a := \frac{\partial \chi^A}{\partial x^a} \quad \text{with} \quad \psi^A{}_{[a,b]} = 0$$

- Particle labels dragged with particles ($u^a \psi^A{}_a = 0$) so

 $$\psi^A{}_t = -\hat{\nu}^i \psi^A{}_i$$

- So we get an *evolution equation* and a *constraint:*

 $$\psi^A{}_{i,t} + \left(\hat{\nu}^j \psi^A{}_j\right){}_i = 0 \quad \text{and} \quad \psi^A{}_{[i,j]} = 0.$$
Physical meaning of ψ^A_i:

- Integrate to find conserved quantity
- Count up matter-space lines crossed in a particular direction
- Represent crystal axes
Jump Conditions

\[
\psi^A_{[i,j]} = 0 \quad \text{and} \quad \psi^A_{i,t} + \left(\hat{\nu}^j \psi^A_j \right)_{,i} = 0
\]

- Covector normal to the shock \(n_i \)
- Shock velocity \(s^i \) and normal shock speed \(s = s^i n_i \)
- Projector into surface tangent: \(\|_{i,j} := \delta^i_j - n^i n_j \)
- Jump conditions become

\[
[\psi^A_{\|k}] = 0 \quad \text{and} \quad [\psi^A_n(\hat{\nu}^n - s)] + \psi^A_{\|i}[\hat{\nu}^{\|i}] = 0
\]
Jump Conditions: Constraint Examples

\[[\psi^A_{||k}] = 0 \]

\[[\psi^Y_y] \neq 0 \]

\[[\psi^X_y] \neq 0 \]
Jump Conditions: Evolution Equation Examples

\[
[\psi^A_n(\hat{v}^n - s)] + \psi^A_{\parallel i}[\hat{v}^\parallel_i] = 0
\]

\[
\hat{v}^\parallel_i = 0, \quad s = 0, \quad [\psi^A_n \hat{v}^n] = 0
\]

\[
\hat{v}^n = 0, \quad \psi^A_{\parallel i}[\hat{v}^\parallel_i] - s[\psi^A_n] = 0
\]
Elasticity: Shear Stresses

Perfect Fluid

Initial contact stays stationary with evolution in time.
Elastic Solid

Initial discontinuity in velocity produces shear waves as time evolves.
How is the stress-energy tensor changed?

- More general stress-energy tensor

\[T^{ab} = e u^a u^b + p^{ab} = e u^a u^b + ph^{ab} + \pi^{ab} \]

- Anisotropic stress \(\pi^{ab} \) comes from

\[\pi_{ab} := \psi^A_a \psi^B_b \pi_{AB} \]

- On matter space, \(\pi_{AB} \) relates \(k_{AB} \) to \(g^{AB} \)

- Relaxed state at \(k_{AB} = n^{2/3} g_{AB} \)

- Have \(u^a h^{bc} T_{ab} = 0 \) \(\rightarrow \) heat-flow terms are zero
Matter evolution equations

<table>
<thead>
<tr>
<th>Conserved Quantity</th>
<th>Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_i = \text{fluid} + \pi_{ij} v^j$</td>
<td>$\mathcal{F}(S_j)' = \text{fluid} + \pi_{ij}'$</td>
</tr>
<tr>
<td>$\tau = \text{fluid} + \pi$</td>
<td>$\mathcal{F}(\tau)' = \text{fluid} - \pi \alpha^{-1} \beta^i + \gamma^{ij} \pi_{jk} v^k$</td>
</tr>
<tr>
<td>ψ^A_i</td>
<td>$\mathcal{F}(\psi^A_j) = \hat{v}^k \psi^A_k \delta^i_j$</td>
</tr>
<tr>
<td>D</td>
<td>$\mathcal{F}(D)$</td>
</tr>
</tbody>
</table>

Advection equation: $k_{AB,t} + \hat{v}^i k_{AB,i} = 0$
Elasticity results

- Newtonian limit of our relativistic code matches published Newtonian Riemann tests
- 2D tests match 1D tests and exact solutions where available
- 2D cylindrical coordinates demonstrates that we can use a general metric

see C. Gundlach, I. Hawke, and SJE, CQG 29 015055 (2012)
Elasticity results

see C. Gundlach, I. Hawke, and SJE, CQG 29 015055 (2012)
Elasticity results

see C. Gundlach, I. Hawke, and SJE, CQG 29 015055 (2012)
Outline

Technical aspects to address:
- Elasticity
- Interfaces
- Stellar surface
- Starquakes
Separate grid into regions governed by different physical models

- Track the moving boundary using a level-set function, ϕ
- Level set is associated with particles, so $u^a \nabla_a \phi = u^a \phi, a = 0$
- In $3+1$ split: advection
Interfaces

Separate grid into regions governed by different physical models

Track the moving boundary using a level-set function, ϕ

Level set is associated with particles, so $u^a \nabla_a \phi = u^a \phi, a = 0$

In $3+1$ split: advection
Interfaces: What happens at the interface?

- Apply appropriate boundary conditions
- Use approximate solution of multimaterial Riemann problem to determine behavior at the boundary
- Extension of ghost fluid method (GFM)
Example: Original GFM

Ghost fluid method:
- Continuous across contact: $p, \nu^{(n)}$
- Discontinuous across contact: $s, \nu^{(t)}$
- Calculate $n = n(s, p)$
Example: Original GFM

Ghost fluid method:
- Continuous across contact: $p, v^{(n)}$
- Discontinuous across contact: $s, v^{(t)}$
- Calculate $n = n(s, p)$
In general relativity

- Say interface has normal covector s_a and $s_a u^a = 0$
- In 3 + 1 split $s_a = v_\perp n_a + k_a$ so
 $$[v^a k_a] = [v_\perp] = 0$$
- We have either of the following boundary conditions
 $$[T^{ab} s_a s_b] \leftrightarrow [p^{ab} s_a s_b] = 0 \quad \text{Slip}$$
 $$[T^{ab} s_a] \leftrightarrow [p^{ab} s_a] = 0 \quad \text{Stick}$$
In general relativity

- We split p_{ab} into isotropic and anisotropic stress

$$p_{ab} = p h_{ab} + \pi_{ab}$$

- Interface conditions become

$$[p(1 - v_{\perp}^2) + \pi^{ab}(k_a - v_{\perp} v_a)(k_b - v_{\perp} v_b)] = 0 \quad \text{Slip}$$
$$[ps^b + \pi^{ab}(k_a - v_{\perp} v_a)] = 0 \quad \text{Stick}$$

- In the Newtonian Limit

$$[p + \hat{\pi}^{ij} k_i k_j] = 0 \quad \text{or} \quad [p k^i + \hat{\pi}^{ij} k_j] = 0$$
Interface results

- Newtonian and relativistic interfaces in 1D
- Moved to *multimodel* code for 2D infrastructure
- 2D Newtonian interfaces
Technical aspects to address:
- Elasticity
- Interfaces
- Stellar surface
- Starquakes
Why do we need an atmosphere?

- In terrestrial solids, when \(p \to 0 \), \(n \) and \(\epsilon \) do not
- In NS, shear and thermal terms both scale with \(n \):
 - \(n \to 0 \) and \(\epsilon \to 0 \) as \(p \to 0 \)
 - All zero at the surface
- Small fluctuations at the surface can cause these to go negative, which causes numerical problems
- Positivity preserving schemes have worked for fluids (Radice et al. 2014), but unclear how to extend to elasticity
What is the atmosphere?

- Treat the atmosphere as another *model* in our code.
- Model consists of only a pressure, p_{atm}.
- Don’t evolve.
- Just use to apply boundary conditions at the surface.
Atmosphere Results

Least-Squares Fit:

\[E = p_{\text{atm}}^{1.00}/872.13 \]

Stephanie J. Erickson
University of Southampton

Methods for simulating starquakes in neutron stars
Technical aspects to address:

- Elasticity
- Interfaces
- Stellar surface
- Starquakes

Outline:

- Fluid core
- Solid crust
- Shattered region
- Atmosphere
- Gravity
- Solid-wall
- Periodic
Starquake mechanisms

Cracking
- Material breaks and slips along a surface, handled using interfaces (previous slide)
- Suppressed by pressure in NS?

Shattering
- Instantaneous relaxation, matter-space metric proportional to spacetime metric
- Suggested by molecular dynamics simulations
2D toy model

Combine technical aspects:
- Elasticity
- Interfaces
- Stellar surface
- Starquakes
2D toy model
Future Work

- Assess effect of atmosphere
- Toy model in GR
- Elasticity and interfaces in a 3D fully relativistic code
- Magnetic fields