Radial oscillations of compact stars and collapse to black holes

Alessandro Brillante, Prof. Igor N. Mishustin, FIAS
Outline

1 Motivation
2 Derivation of oscillation equation
3 Results on neutral hybrid stars
4 Results on charged strange and hybrid stars
5 Non-linear effects, critical phenomena
How much charge allowed?

\[\frac{F_C}{F_G} = \frac{e^2}{G m_p^2} \approx 10^{36} \]

Number of baryons in one neutron star: \(N_B \approx 3 \cdot 10^{57} \)

Number of net unit charges allowed to build “reasonable” charged compact stars: \(N_c < 10^{-18} N_B \)

assumption: EOS for charged compact stars calculated at charge neutrality (only 1 independent chemical potential)
prescription to find oscillation equation

- time-dependent spherically symmetric metric

- equations: \(G_{\mu\nu} = 8\pi T_{\mu\nu} \), \(T^{\mu\nu}_{\cdot\nu} = 0 \), \((nu^\mu)_{;\mu} = 0 \)

\[
\partial_\mu \left[\sqrt{-g} F^{\nu\mu} \right] = 4\pi \sqrt{-g} j^\nu
\]

- decompose variables: \(A(r, t) = A_0(r) + \delta A(r, t) \)

- linearize nonlinear equations

- subtract equilibrium equations from time-dependent equations and get perturbations: \(\delta A(r, t) \)

- substitute perturbations in \(T^{\mu\nu}_{\cdot\mu} = 0 \) and get pulsation equation
Derivation of oscillation equation 1

\[
ds^2 = -e^{2\Phi} dt^2 + e^{2\Lambda} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2
\]

\[
G_0^0 = -e^{-2\Lambda} \left[2r^{-1} \Lambda' - \left(1 - e^{2\Lambda} \right) r^{-2} \right]
\]

\[
G_1^1 = e^{-2\Lambda} \left[2r^{-1} \Phi' + r^{-2} \right] - r^{-2}
\]

\[
G_2^2 = e^{-2\Lambda} \left[\Phi'' - \Phi' \Lambda' + \Phi'^2 + r^{-1} (\Phi' - \Lambda') \right]
+ e^{-2\Phi} \left[\Phi \dot{\Lambda} - \ddot{\Lambda} - \dot{\Lambda}^2 \right]
\]

\[
G_0^1 = 2r^{-1} e^{-2\Lambda} \dot{\Lambda}
\]

\[
T_{\mu}^{\gamma} = (\rho + P) u_{\mu} u^{\gamma} + P g_{\mu}^{\gamma} + \frac{1}{4\pi} \left[F_{\mu\alpha} F^{\alpha\gamma} - \frac{1}{4} g_{\mu}^{\gamma} F_{\beta\gamma} F_{\beta\gamma} \right]
\]
Derivation of oscillation equation 2

\[\delta \Lambda = - (\Phi_0' + \Lambda_0') \xi \]

\[\delta \rho = - \xi \rho_0' - (\rho_0 + P_0) \frac{e^{\Phi_0}}{r^2} \left(r^2 e^{-\Phi_0} \xi \right)' \]

\[\delta \Phi' = 4\pi r e^{2\Lambda_0} \delta P + 2\Phi_0' \delta \Lambda + r^{-1} \delta \Lambda - \frac{Q_0 \delta Q e^{2\Lambda_0}}{r^3} \]

\[\delta P = \frac{dP_0}{d\rho_0} \delta \rho = - \xi P_0' - \frac{\gamma P_0 e^{\Phi_0}}{r^2} \left(r^2 e^{-\Phi_0} \xi \right)' \]

Energy-momentum conservation:

\[e^{2\Lambda_0 - 2\Phi_0} (\rho_0 + P_0) \dot{\nu} + \delta P' + \frac{Q_0 Q_0' \xi'}{4\pi r^4} + \frac{Q_0 Q_0'' \xi}{4\pi r^4} \]

\[+ \frac{Q_0' \xi}{4\pi r^4} + \Phi_0' (\delta \rho + \delta P) + (\rho_0 + P_0) \delta \Phi' = 0 \]
The oscillation equation

\[\sigma^2 e^{\lambda_0 - \nu_0} (\frac{1}{\rho_0 + \epsilon_0}) \xi \frac{4}{r} \frac{d}{dr} \xi - e^{-(\lambda_0 + 2\nu_0)/2} \frac{d}{dr} \left[e^{(\lambda_0 + 3\nu_0)/2} \frac{\gamma \rho_0}{r^2} \frac{d}{dr} \left(r^2 e^{-\nu_0/2} \xi \right) \right] \]

\[+ \frac{8\pi G}{c^4} e^{\lambda_0} \rho_0 (\rho_0 + \epsilon_0) \xi - \frac{1}{\rho_0 + \epsilon_0} \left(\frac{d}{dr} \rho_0 \right)^2 \xi. \]

\[\omega^2 e^{2\Lambda_0 - 2\Phi_0} (\rho_0 + P_0) \xi = -e^{-\Lambda_0 - 2\Phi_0} \left[e^{\Lambda_0 + 3\Phi_0} \frac{\gamma P_0}{r^2} \left(r^2 e^{-\Phi_0} \xi \right)' \right]' \]

\[- (\rho_0 + P_0) \frac{\Phi_0'}{2} \xi + 4r^{-1} \xi P_0' + 8\pi (\rho_0 + P_0) \xi e^{2\Lambda_0} P_0 \]

\[+ (\rho_0 + P_0) r^{-4} \xi e^{2\Lambda_0} Q_0^2 \leftarrow \text{CHARGE TERM} \]
Neutral hybrid stars – Gibbs constr.

\[\Omega_{QM} = \sum_{i=u,d,s,e} \Omega_i + \frac{3\mu^4}{4\pi^2} (1 - a_4) + B_{\text{eff}} \]

\[m_s = 100 \text{ MeV}, a_4 = 0.8 \]

Charged hybrid stars – Gibbs constr.

Hadronic phase: relativistic mean-field model, TM1 parameter set
Quark phase: MIT bag model, \(m_s = 100 \text{ MeV} \), \(a_4 = 0.8 \), \(B^{1/4} = 200 \text{ MeV} \)

\[x = 10^{19} \frac{N_c}{N_b} \]

Charged strange stars

Quark phase: MIT bag model, $m_s = 100 \text{ MeV}$, $a_4 = 1.0$, $B^{1/4} = 140 \text{ MeV}$

$$x = 10^{19} \frac{N_c}{N_b}$$

Schwarzschild-like coordinates

\[G_{\mu\nu} = 8\pi T_{\mu\nu}, \quad T^{\mu\nu};_{\gamma} = 0 \]

constrain equations:

\[\Lambda' = 4\pi r (\rho + P) e^{4\Lambda} u^2 + 4\pi r \rho e^{2\Lambda} + \frac{1 - e^{2\Lambda}}{2r} + \frac{Q^2 e^{2\Lambda}}{2r^3} \]

\[\Phi' = 4\pi r (\rho + P) e^{4\Lambda} u^2 + 4\pi r P e^{2\Lambda} + \frac{e^{2\Lambda} - 1}{2r} - \frac{Q^2 e^{2\Lambda}}{2r^3} \]

evolution equations:

\[\frac{\partial P}{\partial t} + c_{11} \frac{\partial P}{\partial r} + c_{12} \frac{\partial u^1}{\partial r} + c_{13} = 0 \]

\[\frac{\partial u^1}{\partial t} + c_{21} \frac{\partial P}{\partial r} + c_{22} \frac{\partial u^1}{\partial r} + c_{23} = 0 \]

\[\xi = \frac{\partial \rho}{\partial P} - e^{2\Lambda} u^2 + \frac{\partial \rho}{\partial P} e^{2\Lambda} u^2 \]

\[c_{11} = \frac{1}{\xi} \left(\frac{\partial \rho}{\partial P} - 1 \right) e^{2\Phi} u_0 u^1 \]

\[c_{12} = \frac{\rho + P}{\xi u^0} \]

\[c_{13} = \frac{e^{\Phi} u^1}{2r^3 (1 + e^{2\Lambda} u^2)} \xi \left[2e^{\Lambda} Q r P_{ch} + 2e^{3\Lambda} Q r P_{ch} u^2 + 5e^{\Phi} r^2 (\rho + P) u^0 \right. \]

\[+ \left. e^{2\Lambda + \Phi} (\rho + P) \left(Q^2 + r^2 \left(-1 - 8\pi P r^2 + 4u^2 \right) \right) u^0 \right] \]

\[c_{21} = \frac{1}{(\rho + P) \xi} \frac{\partial \rho}{\partial P} e^{2\Phi} u_0 u^0 \]

\[c_{22} = c_{11} \]

\[c_{23} = -\frac{e^{\Phi - 2\Lambda}}{2r^3 (\rho + P) \xi} \left[\frac{\partial \rho}{\partial P} \left(2e^{\Lambda} Q r P_{ch} + 2e^{3\Lambda} Q r P_{ch} u^2 + e^{\Phi} r^2 (\rho + P) u^0 \right. \right. \]

\[+ \left. \left. e^{2\Lambda + \Phi} (Q^2 - r^2 - 8\pi P r^4) (\rho + P) u^0 \right) + 4e^{2\Lambda + \Phi} r^2 (\rho + P) u^1 u^0 \right] \]
1D code

- 2nd order time, 4th order space accuracy

- constrained evolution

- implicit discretization for evolution equations (iterated Crank-Nicolson)

- bicgstab algorithm for sparse linear system

- strengths: good tracking of stellar surface (Lagrangian coordinates), CFL condition always fulfilled, for spheres faster than multidimensional codes, better resolution possible

- weaknesses: unable to penetrate Schwarzschild radius (coordinate singularity), limited to barotropic fluids, limited to spheres
Generalized Zeldovich EoS

\[P = a (\rho - \rho_0) \]

Compactness \(x = \frac{2M}{R} \) of maximum mass and maximum radius configuration depends only on \(a \).

Different choices for \(\rho_0 \) preserve compactness (for max m. and max r. configurations).
Critical phenomena

Maximum mass configuration (km): 2.984016494
Selected masses (km): 2.962963, 2.963477514, 2.9635508309, 2.96356153, 2.96358311021
Gravitational collapse to black hole, initially outgoing velocity
Gravitational collapse to black hole, initially outgoing velocity
Gravitational collapse to black hole, initially outgoing velocity
Parametrization for barotropic EoS

\[f = \sum_{k=1}^{3} \frac{a_{k1} + a_{k2}x + a_{k3}x^2}{\left(1 + e^{a_{k5}(a_{k6}+x)}\right)\left(1 + a_{k4}x\right)} \]

\[f = \log(\text{density}) \]

\[x = \log(\text{pressure}) \]
Results

- generalization of Chandrasekhar's equation to charge

- enhancement of masses of hybrid and strange stars due to Coulomb repulsion

- both Coulomb interaction and deconfinement lead to lower frequencies of radial eigenmodes at given central density

- A naïve application to stars with sharp density discontinuity contradicts with the static stability criterion.

Outlook

- Are there hollow charged spheres?

- introduce viscosity

- Critical phenomena with realistic microphysics
Radial oscillations in neutral and charged compact stars

Alessandro Brillante, Igor Mishustin, FIAS

EMMI Workshop "Quark Matter in Compact Stars", FIAS, Frankfurt am Main, October 7-10, 2013
Outline

1 Motivation

2 Derivation of oscillation equation

3 Results on neutral hybrid stars

4 Results on charged strange and hybrid stars
Radial oscillations in neutral and charged compact stars

Alessandro Brillante, Igor Mishustin, FIAS
EMMI Workshop "Quark Matter in Compact Stars", FIAS, Frankfurt am Main, October 7-10, 2013
Outline

1 Motivation

2 Derivation of oscillation equation

3 Results on neutral hybrid stars

4 Results on charged strange and hybrid stars
Outline

1 Motivation

2 Derivation of oscillation equation

3 Results on neutral hybrid stars

4 Results on charged strange and hybrid stars
Why care about charge in compact stars?

- even if the global charge is zero, there can be separation of charges inside / freedom to arrange charge within

- charge might prevent gravitational collapse and support supermassive stars

- charged balls might be natural candidates to form extremal black holes
Radial oscillations

- spherical symmetry preserved
- type of oscillation described by number of nodes
- Sturm-Liouville equation as in Newtonian gravity
- discrete set of frequencies given by boundary conditions: \(\xi(r=0) = 0, \Delta P(r=R) = 0 \)
Results

- generalization of Chandrasekhar's equation to charge

- enhancement of masses of hybrid and strange stars due to Coulomb repulsion

- both Coulomb interaction and deconfinement lead to lower frequencies of radial eigenmodes at given central density

- A naïve application to stars with sharp density discontinuity contradicts with the static stability criterion.

Outlook

- Are there hollow charged spheres?

- introduce viscosity

- Critical phenomena with realistic microphysics