Radial oscillations of compact stars and collapse to black holes

Alessandro Brillante, Prof. Igor N. Mishustin, FIAS

- 1 Motivation
- 2 Derivation of oscillation equation
- 3 Results on neutral hybrid stars
- 4 Results on charged strange and hybrid stars
- 5 Non-linear effects, critical phenomena

How much charge allowed?

Number of baryons in one neutron star: $N_B \approx 3 \cdot 10^{57}$

Number of net unit charges allowed to build "reasonable" charged compact stars: $N_c < 10^{-18} N_B$

assumption: EOS for charged compact stars calculated at charge neutrality (only 1 independent chemical potential)

prescription to find oscillation equation

- time-dependent spherically symmetric metric

- equations:
$$G_{\mu\nu} = 8\pi T_{\mu\nu} T^{\mu\nu}_{;\nu} = 0 (nu^{\mu})_{;\mu} = 0$$

 $\partial_{\mu} \left[\sqrt{-g} F^{\nu\mu} \right] = 4\pi \sqrt{-g} j^{\nu}$

- decompose variables: $A(r, t) = A_0(r) + \delta A(r, t)$
- linearize nonlinear equations
- subtract equilibrium equations from time-dependent equations and get perturbations: $\delta A(r, t)$

- substitute perturbations in $T^{\mu\,r}_{\ ;\,\mu}=0$ and get pulsation equation

Derivation of oscillation equation 1

$$ds^{2} = -e^{2\Phi}dt^{2} + e^{2\Lambda}dr^{2} + r^{2}d\theta^{2} + r^{2}sin^{2}\theta d\phi^{2}$$

$$\begin{split} G_0^{\ 0} &= -e^{-2\Lambda} \left[2r^{-1}\Lambda' - \left(1 - e^{2\Lambda}\right)r^{-2} \right] \\ G_1^{\ 1} &= e^{-2\Lambda} \left[2r^{-1}\Phi' + r^{-2} \right] - r^{-2} \\ G_2^{\ 2} &= e^{-2\Lambda} \left[\Phi'' - \Phi'\Lambda' + \Phi'^2 + r^{-1} \left(\Phi' - \Lambda'\right) \right] \\ &+ e^{-2\Phi} \left[\dot{\Phi}\dot{\Lambda} - \ddot{\Lambda} - \dot{\Lambda}^2 \right] \\ G_0^{\ 1} &= 2r^{-1}e^{-2\Lambda}\dot{\Lambda} \end{split}$$

$$T_{\mu}^{\nu} = (\rho + P) u_{\mu} u^{\nu} + P g_{\mu}^{\nu} + \frac{1}{4\pi} \left[F_{\mu\alpha} F^{\alpha\nu} - \frac{1}{4} g_{\mu}^{\nu} F^{\beta\gamma} F_{\beta\gamma} \right]$$

Derivation of oscillation equation 2

$$\begin{split} \delta\Lambda &= -(\Phi_{0}' + \Lambda_{0}')\xi \\ \delta\rho &= -\xi\rho_{0}' - (\rho_{0} + P_{0})\frac{e^{\Phi_{0}}}{r^{2}}\left(r^{2}e^{-\Phi_{0}}\xi\right)' \\ \delta\Phi' &= 4\pi r e^{2\Lambda_{0}}\delta P + 2\Phi_{0}'\delta\Lambda + r^{-1}\delta\Lambda - \frac{Q_{0}\delta Q e^{2\Lambda_{0}}}{r^{3}} \\ \deltaP &= \frac{dP_{0}}{d\rho_{0}}\delta\rho = -\xi P_{0}' - \frac{\gamma P_{0}e^{\Phi_{0}}}{r^{2}}\left(r^{2}e^{-\Phi_{0}}\xi\right)' \end{split}$$

Energy-momentum conservation:

$$e^{2\Lambda_0 - 2\Phi_0} \left(\rho_0 + P_0\right) \dot{v} + \delta P' + \frac{Q_0 Q_0' \xi'}{4\pi r^4} + \frac{Q_0 Q_0'' \xi}{4\pi r^4} +$$

The oscillation equation

Chandrasekhar, APJ, 140 (1964) 417

$$\sigma^{2} e^{\lambda_{0} - \nu_{0}} (p_{0} + \epsilon_{0}) \xi = \frac{4}{r} \frac{d p_{0}}{d r} \frac{2}{\xi} - e^{-(\lambda_{0} + 2\nu_{0})/2} \frac{d}{d r} \left[e^{(\lambda_{0} + 3\nu_{0})/2} \frac{\gamma p_{0}}{r^{2}} \frac{d}{d r} (r^{2} e^{-\nu_{0}/2} \xi) \right] + \frac{8\pi G}{c^{4}} e^{\lambda_{0}} \frac{4}{p_{0}} (p_{0} + \epsilon_{0}) \xi - \frac{1}{p_{0} + \epsilon_{0}} \left(\frac{d p_{0}}{d r} \right)^{2} \xi.$$

AB & Igor N. Mishustin, EPL, 105 (2014) 39001

$$\omega^{2} e^{2\Lambda_{0}-2\Phi_{0}} (\stackrel{1}{\rho_{0}} + P_{0}) \xi = -e^{-\Lambda_{0}^{2}-2\Phi_{0}} \left[e^{\Lambda_{0}+3\Phi_{0}} \frac{\gamma P_{0}}{r^{2}} (r^{2} e^{-\Phi_{0}} \xi)' \right]' - (\rho_{0}^{5} + P_{0}) \Phi_{0}'^{2} \xi + 4r^{-1} \xi P_{0}' + 8\pi (\rho_{0}^{4} + P_{0}) \xi e^{2\Lambda_{0}} P_{0} + (\rho_{0} + P_{0}) r^{-4} \xi e^{2\Lambda_{0}} Q_{0}^{2} \longleftarrow \text{CHARGE TERM}$$

Neutral hybrid stars – Gibbs constr.

$$\Omega_{\rm QM} = \sum_{i=u,d,s,e} \Omega_i + \frac{3\mu^4}{4\pi^2} (1 - a_4) + B_{\rm eff}$$

Weissenborn et al. Astrophys. J. 740, L14 (2011)

Charged hybrid stars – Gibbs constr.

Hadronic phase: relativistic mean-field model, TM1 parameter set Quark phase: MIT bag model, $m_s = 100 MeV$, $a_4 = 0.8$, $B^{1/4} = 200 MeV$

$$x = 10^{19} \frac{N_c}{N_b}$$

M. Alford, M. Braby, M. Paris, S. Reddy, ApJ, 629, 969, (2005)

Charged strange stars

Quark phase: MIT bag model, $m_s = 100 MeV$, $a_4 = 1.0$, $B^{1/4} = 140 MeV$

Schwarzschild-like coordinates

$$G_{\mu\nu} = 8\pi T_{\mu\nu} \quad T^{\mu\nu}_{;\nu} = 0$$

constrain equations: $\Lambda' = 4\pi r \left(\rho + P\right) e^{4\Lambda} u^{12} + 4\pi r \rho e^{2\Lambda} + \frac{1 - e^{2\Lambda}}{2r} + \frac{Q^2 e^{2\Lambda}}{2r^3}$ $\Phi' = 4\pi r \left(\rho + P\right) e^{4\Lambda} u^{12} + 4\pi r P e^{2\Lambda} + \frac{e^{2\Lambda} - 1}{2r} - \frac{Q^2 e^{2\Lambda}}{2r^3}$ evolution equations: $\epsilon = \frac{\partial \rho}{\partial r} - e^{2\Lambda} u^{12} + \frac{\partial \rho}{\partial r} e^{2\Lambda} u^{12}$

$$\frac{\partial P}{\partial t} + c_{11}\frac{\partial P}{\partial r} + c_{12}\frac{\partial u^1}{\partial r} + c_{13} = 0$$
$$\frac{\partial u^1}{\partial t} + c_{21}\frac{\partial P}{\partial r} + c_{22}\frac{\partial u^1}{\partial r} + c_{23} = 0$$

$$\begin{split} \xi &= \frac{\partial \rho}{\partial P} - e^{2\Lambda} u^{12} + \frac{\partial \rho}{\partial P} e^{2\Lambda} u^{12} \\ c_{11} &= \frac{1}{\xi} \left(\frac{\partial \rho}{\partial P} - 1 \right) e^{2\Phi} u^0 u^1 \\ c_{12} &= \frac{\rho + P}{\xi u^0} \\ c_{13} &= \frac{e^{\Phi} u^1}{2r^3 \left(1 + e^{2\Lambda} u^{12} \right) \xi} \left[2e^{\Lambda} Qr \rho_{ch} + 2e^{3\Lambda} Qr \rho_{ch} u^{12} + 5e^{\Phi} r^2 \left(\rho + P \right) u^0 \\ &+ e^{2\Lambda + \Phi} \left(\rho + P \right) \left(Q^2 + r^2 \left(-1 - 8\pi P r^2 + 4u^{12} \right) \right) u^0 \right] \\ c_{21} &= \frac{1}{(\rho + P)\xi} \frac{\partial \rho}{\partial P} e^{2\Phi - 2\Lambda} u^0 \\ c_{22} &= c_{11} \\ c_{23} &= -\frac{e^{\Phi - 2\Lambda}}{2r^3 \left(\rho + P \right) \xi} \left[\frac{\partial \rho}{\partial P} \left(2e^{\Lambda} Qr \rho_{ch} + 2e^{3\Lambda} Qr \rho_{ch} u^{12} + e^{\Phi} r^2 \left(\rho + P \right) u^0 \\ &+ e^{2\Lambda + \Phi} \left(Q^2 - r^2 - 8\pi P r^4 \right) \left(\rho + P \right) u^0 \right) + 4e^{2\Lambda + \Phi} r^2 \left(\rho + P \right) u^{12} u^0 \right] \end{split}$$

1D code

- 2nd order time, 4th order space accuracy
- constrained evolution
- implicit discretization for evolution equations (iterated Crank-Nicolson)
- bicgstab algorithm for sparse linear system
- strengths: good tracking of stellar surface (Lagrangian coordinates), CFL condition always fullfilled, for spheres faster than multidimensional codes, better resolution possible

- weaknesses: unable to penetrate Schwarzschild radius (coordinate singularity), limited to barotropic fluids, limited to spheres

Generalized Zeldovich EoS

$P = a (rho-rho_0)$

Compactness x=2M/R of maximum mass and maximum radius configuration depends only on a.

Different choices for rho_0 preserve compactness (for max m. and max r. configurations).

(1914-1987)

Maximum mass configuration (km): 2.984016494 Critical phenomena Maximum mass configuration (km): 2.984016492 Selected masses (km): 2.962963, 2.963477514, 2.9635508309, 2.96356153, 2.96358311021

Gravitational collapse to black hole, initially outgoing velocity

Gravitational collapse to black hole, initially outgoing velocity

Gravitational collapse to black hole, initially outgoing velocity

Parametrization for barotropic EoS

Results

- generalization of Chandrasekhar's equation to charge

- enhancement of masses of hybrid and strange stars due to Coulomb repulsion

- both Coulomb interaction and deconfinement lead to lower frequencies of radial eigenmodes at given central density

- A naïve application to stars with sharp density discontinuity contradicts with the *static stability criterion*. **Outlook**

- Are there hollow charged spheres?

- introduce viscosity

- Critical phenomena with realistic microphysics

Radial oscillations in neutral and charged compact stars

Alessandro Brillante, Igor Mishustin, FIAS

EMMI Workshop "Quark Matter in Compact Stars", FIAS, Frankfurt am Main, October 7-10, 2013

- 1 Motivation
- 2 Derivation of oscillation equation
- 3 Results on neutral hybrid stars
- 4 Results on charged strange and hybrid stars

Radial oscillations in neutral and charged compact stars

Alessandro Brillante, Igor Mishustin, FIAS

EMMI Workshop "Quark Matter in Compact Stars", FIAS, Frankfurt am Main, October 7-10, 2013

- 1 Motivation
- 2 Derivation of oscillation equation
- 3 Results on neutral hybrid stars
- 4 Results on charged strange and hybrid stars

- 1 Motivation
- 2 Derivation of oscillation equation
- 3 Results on neutral hybrid stars
- 4 Results on charged strange and hybrid stars

Why care about charge in compact stars?

- even if the global charge is zero, there can be separation of charges inside / freedom to arrange charge within

- charge might prevent gravitational collapse and support supermassive stars

 charged balls might be natural candidates to form extremal black holes

Radial oscillations

- spherical symmetry preserved
- type of oscillation described by number of nodes
- Sturm-Liouville equation as in Newtonian gravity
- discrete set of frequencies given by boundary conditions: $\xi(r=0)=0$, $\Delta P(r=R)=0$

Results

- generalization of Chandrasekhar's equation to charge

- enhancement of masses of hybrid and strange stars due to Coulomb repulsion

- both Coulomb interaction and deconfinement lead to lower frequencies of radial eigenmodes at given central density

- A naïve application to stars with sharp density discontinuity contradicts with the *static stability criterion*. **Outlook**

- Are there hollow charged spheres?

- introduce viscosity

- Critical phenomena with realistic microphysics