Critical behaviour: Head-on collision of rotating relativistic neutron stars

Natascha Wechselberger

Prof. Rezzolla Institute for Theoretical Physics Goethe University Frankfurt

August 24, 2017

Overwiev

- 2 Numerical set-up
- 3 Initial data
- 4 Head-on collision of TOVs
- 5 Head-on collision of uniformly rotating stars
- 6 Head-on collision of differentially rotating stars
- 7 Conclusions

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating star

Head-on collision of differentially rotating stars

Conclusions

Universality

Scale-invariance or time independence

Type I

Critical Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

Lifetime of the metastable solution:

$$t_p = -\gamma \ln |p - p^*| + C$$

 γ : Universal critical index

Type II

Black hole mass scaling relation: $M_{Bh} = C|p - p^*|^{\gamma}$

Scale-invariance: $\Phi^*(r, t) = \Phi^*(r \cdot e^{\Delta}, t \cdot e^{\Delta})$

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

- Implosion of massless scalar fields in spherical symmetry (1993)
- Collapse of axisymmetric gravitational waves in pure vacuum spacetimes (1993)
- Collapse of a massive scalar field
- Collision of non-rotating neutron stars (2007)
- Collapse of non-rotating and rotating radiation fluids (1994, 2016)

Kerr black holes

Spin restriction

Critical Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

axially-symmetric solution; characterized by its mass and spin Event horizon at $r_+ = M + \sqrt{M^2 - (J/M)^2}$

Cosmic Censorship Hypothesis

Gravitational collapse from physically reasonable, generic set of initial conditions never gives rise to a 'naked' singularity which is not clothed by an event horizon.

$J/M^2 \leq 1$

Numerical set-Up

Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

Einstein Toolkit: Finite differencing, HRSC, CCZ4, AMR, yz-reflection symmetry

Initial data

Standard superposition method:

$$g_{\mu
u} pprox g_{\mu
u}^{(Star \ A)} + g_{\mu
u}^{(Star \ B)} - \eta_{\mu
u}$$

Equation of state

$$\mathbf{p} = \mathbf{K} \rho^{\mathsf{\Gamma}}$$

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

TOV

 $J/M^2 = 0$ ID: pizzaTOV-Solver **Uniform rotation** $\Omega = constant$

$$J/M^2$$
: 0.6 – 0.9

ID: RNSID

Differential rotation

$$\Omega - \Omega_C = \frac{F(\Omega)}{A^2}$$
$$J/M^2: \ 1-2$$

ID: RNSID

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating star

Head-on collision of differentially rotating star

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating star

Head-on collision of differentially rotating star

Conclusions

Critical central rest mass density: $p^* = \rho_c^* = 0.0006491655 \cong 4.01 \cdot 10^{14} [g/cm^3]$

Initial velocity	0.15	
Initial distance	73.5 km	

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating star

Initial velocity	0
Initial distance	150 km
M _{initally per NS}	0.9 - 1.0 M_{\odot}
Jinitally per NS	0.5 - 0.9
J/M^2	0.6 - 0.9

Numerica set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating star

Subcritical long-run simulations

Critical Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

(r_p/r_e)	0.57		0.68		0.78	
	sub	super	sub	super	sub	super
M _{ADM}	1.0011020	1.0011024	0.973460	0.973461	0.9328829	0.9328830
J _{ADM}	0.899865	0.899866	0.753060	0.753062	0.5581656	0.5581657
(J/M^2)	0.8978850	0.8978853	0.794681	0.794682	0.64137023	0.64137021
M _{max}	1.	70	1.	68	1.	66

Head-on collision of uniformly rotating stars: rest-mass density and angular velocity

Critical Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Critical Phenomena

Numerica set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating star

Conclusions

Figure: Evolution of the central lapse function for collisions of stars with $r_p/r_e = 0.57$. The legend on the right side terms the initial central rest-mass densities.

Critical Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

Figure: Evaluation of the lifetimes of the metastable phases

Critical Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating star

Conclusions

Figure: $\ln(\rho_c - \rho_c^*)$ vs. the lifetime of the metastable state with $r_p/r_e = 0.57$, 0.68 and 0.78. The slope of the linear fit gives the critical index.

Critical Phenomena

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

Figure: Evolution of $(\alpha_c - \alpha_c^*)/\alpha_c^*$ for collisions of stars with a fixed rest-mass density of 0.000448683595 but varying angular momentum which is adjusted by the axis ratio parameter as indicated in the r.

Critical Phenomena

Numerica set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating star

Conclusions

Figure: $\ln(J_{ADM} - J^*_{ADM})$ plotted against the lifetime of the metastable state determined for collisions of stars with $r_c = 0.000448683595$. The slope of the linear fit gives the critical index.

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

ρ_{c}	r_p/r_e	A _{diff}	Initial J _{ADM}	Initial M _{ADM}	Initial J/M^2
0.0004	0.6	0.9	1.15	1.10	0.96
0.00043	0.46	2.0	1.26	1.10	1.04
0.00042	0.37	1.3	2.03	1.29	1.21

Table: Properties of the investigated three differentially rotating stellar models.

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

Figure: Supercritical head-on collision of uniformly and differentially rotating neutron stars.

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating star

Head-on collision of differentially rotating stars

Conclusions

Conclusions and Outlook

- Validation: Critical behaviour of colliding non-rotating stars
- Evaluated: Critical behaviour of colliding uniformly-rotating stars.
 Observed: universal critical index.
- Collision of differentially rotating stars: Still too far away from the $J/M^2 \approx 2$ models.

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating star

Head-on collision of differentially rotating stars

Conclusions

THANK YOU FOR YOUR ATTENTION

- Critical Phenomena
- Numerical set-up
- Initial data
- Head-on collision of TOVs
- Head-on collision of uniformly rotating stars
- Head-on collision of differentially rotating stars
- Conclusions

Figure: Hamiltonian constraint violation of a subcritical collision in the xy-plane - inner region.

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Conclusions

Figure: Hamiltonian constraint violation of a subcritical collision in the xy-plane - outer region.

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

Numerical set-up

Initial data

Head-on collision of TOVs

Head-on collision of uniformly rotating stars

Head-on collision of differentially rotating stars

