THEORY AND SIMULATIONS OF SUPER-EDDINGTON BH ACCRETION FLOWS

In collaboration with: Ramesh Narayan, Andrew Chael, Magdalena Menz

Frankfurt, Sep 2016

ACCRETION ON COMPACT OBJECTS

• Compactness allows for extraction of significant fraction of the gravitational energy (up to 40% of $\dot{M}c^2$ for a BH!)

ACCRETION ON BLACK HOLES

BH accretion is involved in some of most energetic phenomena:

- X-ray binaries
- Active galactic nuclei
- Tidal disruptions of stars
- Gamma ray-bursts
- NS+BH mergers
- **• Ultraluminous X-ray Sources** *(NASA)*

OPTICAL IMAGE OF M51 (+NGC 5195)

M51 IN X-RAYS

(c) Chandra

M51 IN X-RAYS

(c) Chandra

OPTICAL IMAGE OF M51 (+NGC 5195)

ULTRALUMINOUS X-RAY SOURCES

- Brighter than the Eddington luminosity for 10 Msun BH:
	- $L>L_{\rm Edd}(10M_{\odot}) \approx 10^{39} \rm erg/s$
- Non-nuclear
- Either sub-Eddington hosting intermediate mass BH or super-critical hosting BH or NS

MODES OF ACCRETION

surface density (~optical depth)

THIN ACCRETION DISKS

- The standard model of a thin disk (Shakura & Sunyaev 73, Novikov & Thorne 73) provides an analytic solution of a **geometrically thin**, **optically thick**, **radiatively efficient disk**
- (Thermally unstable in the radiation pressure dominated regime)
- Radiative efficiency and emission profile uniquely determined - independent of viscosity

SUPER-EDDINGTON DISKS

- Geometrically thick
- Non-trivial, two-dimensional (turbulent) radiative transport
- Large optical depths photon trapping
- Radiatively driven outflows
- Sub-Keplerian
- Require numerical solutions!

SIMULATING BH ACCRETION

Essential components:

- stationary space-time: (GR, Kerr-Schild metric)
- magnetized gas: MHD (ideal)
- photons: radiation transfer (simplified)
- electrons: thermal & non-thermal
- radiative postprocessing: spectra, images
- multidimensional fluid dynamics solver

SIMULATING ACCRETION

KORAL radiative MHD code (Sadowski+13, …)

HEROIC GR RTE solver (Zhu+15, Narayan+15)

other groups performing (GR) **radiative** MHD:

Ohsuga+ Jiang+, Fragile+, McKinney+, Gammie+, …

KORAL

- GR ideal $MHD + div B=0$
- Radiation evolved simultaneously providing cooling and pressure
- Radiative transfer under M1 approximation
- Conservation of number of photons (allows for tracking the radiation temperature)
- Comptonization
- Independent evolution of thermal electrons and ions providing self-consistent temperatures
- Synchrotron and bremmstrahlung Planck and Rosseland opacities dependent on both gas and radiation temperature
- Coulomb coupling
- Self-consistent (depending on electron and ion temperatures) adiabatic index

Sufficient set to study accretion flows at any accretion rate, including the intermediate regime

$$
(\rho u^{\mu})_{;\mu} = 0
$$

\n
$$
(T^{\mu}_{\nu})_{;\mu} = G_{\nu},
$$

\n
$$
(R^{\mu}_{\nu})_{;\mu} = -G_{\nu}.
$$

\n
$$
(nu^{\mu})_{;\mu} = \dot{n}.
$$

\n
$$
F^{*\mu\nu}_{;\nu} = 0
$$

\n
$$
T_e(n_e s_e u^{\mu})_{;\mu} = \delta_e q^v + q^C + q^2
$$

$$
T_{\rm i}(n_{\rm i} s_{\rm i} u^{\mu})_{;\mu} = 0_{\rm e} q + q + O_t
$$

$$
T_{\rm i}(n_{\rm i} s_{\rm i} u^{\mu})_{;\mu} = (1 - \delta_{\rm e}) q^{\rm v} - q^{\rm C},
$$

$$
\delta_{\rm e} = \frac{1}{1 + f(T_e, T_i, \beta)}
$$

 \mathcal{L}

MODES OF ACCRETION

surface density (~optical depth)

HIGHLIGHTS OF SUPER-CRITICAL ACCRETION

- super-Eddington accretion feasible
- geometrically and optically thick
- photosphere far from the equatorial plane
- radiatively driven outflows
- significant photon trapping (affecting both radial and vertical radiation transport)
- moderate beaming
- observables strongly inclination dependent!

HEROIC

3D GR RADIATIVE POSTPROCESSOR WITH COMPTONIZATION

- **General relativistic, grid base** radiation transfer equation solver
- **Frequency resolved** radiation
- Short- and long-characteristics
- **Comptonization** via Kompaneets equation
- Takes density, velocities and **heating rate** as input
- Works efficiently for **any optical depth**

SUPER-CRITICAL ACCRETION

wind

photosphere

- high-inclination
- moderate beaming - super-Eddington
- hard spectrum
- **• ULXs?**

- low-inclination
- ~Eddington
- soft spectrum
- **ULSs?**

(ultraluminous supersoft)

RADIATIVE & KINETIGEFFICIENCY

- Anisotropic radiation field
- Up to \sim 10 times Eddington apparent flux for near-axis observers and 10 times Eddington accretion rate
- But only ~Eddington apparent luminosity at larger inclinations
- Low total radiative efficiency!
- But the total energy extracted efficiently (total efficiency $\sim 3\% \dot{M}c^2$)
- The excess must go into the kinetic component (outflows)
- The higher the accretion rate, the higher the fraction of energy output going into kinetic energy of the outflow!

Aleksander Sądowski, MIT **Simulations of radiative accretion in GR**

SPECTRA vs accretion rate for $i=30$ deg, $a=0$

Spectrum is getting **softer** with Mdot because of increasing photosphere height

NGC 1313 X-1

- Two distinct spectral states : softer/harder
- Funnel opening angle (photosphere height) varies with accretion rate strongly modifies obscuration for a given observer

SUPER-EDDINGTON ACCRETION

- Super-critical accretion disks are geometrically and optically thick
- Total radiative efficiency drops down with increasing transfer rate
- Kinetic output balances the missing radiation
- Radiation field anisotropic along axis observers see super-Eddington fluxes when observers at large inclinations - just Eddington
- Increasing transfer rate and the photosphere height may lead to obscuration and softer emission
- However, simulations limited to the innermost region (R<100Rg)

MOVING TO LARGER SCALES - ULX BUBBLES

- Up to 25% ULX show ISM bubbles
- Shock-ionized nebulae
- Expansion velocity ~100 km/s
- Radius \sim 100-200pc
- Lifetime ~ I Myrs
- Often together with jet-related hot spots
- Most likely inflated by long-lasting kinetic outflow from ULX with luminosity \sim 1e39 - 1e40 erg/s

EVOLUTION OF ULX BUBBLES Project led by Magdalena Menz, Univ. of Glasgow

- Outflows from the accretion flow push out and shock ISM
- Front / rear shocks form
- Shocked wind hot but low density
- ISM swept into a shell which collapses once cooling starts to be efficient
- Expected opt/UV emission from the shocked ISM and X-rays from the shocked wind
- Simulations performed with KORAL adopting free-free and bound-free opacities

- Luminosity dominated by optical/UV from shocked ISM
- X-rays produced by the shocked wind
- But the properties of the shocked wind depend on the properties of the outflow, e.g., the mass outflow rate, not only on the kinetic power!
- **• We may learn a lot about the outflow if we look how they interact with ISM!**

SUPER-EDD ACCRETION - SUMMARY

- Numerical **simulations are** a **powerful** and often required tool to understand supercritical accretion flows
- More work is required to implement **better physics** (double Compton, frequency dependent radiative transfer…)
- **Properties** of the flow **not unique** and depend strongly on a number of parameters: accretion rate, BH spin, magnetic field properties, history of accretion?
- Simulations limited to the **inner region** and short

- Constraints from the other (**large scale**) end may be very **helpful**
- Need for innovative numerical methods