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ACCRETION ON  
COMPACT OBJECTS
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• Compactness allows for extraction of significant fraction of the 
gravitational energy (up to 40% of        for a BH!)	

(c) Jake Lutz, https://youtu.be/Dg_ukI_QWOw

Ṁc2

https://youtu.be/Dg_ukI_QWOw


ACCRETION ON BLACK HOLES
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BH accretion is involved in some of most energetic phenomena:	
• X-ray binaries	
• Active galactic nuclei	
• Tidal disruptions of stars	
• Gamma ray-bursts	
• NS+BH mergers	
• Ultraluminous X-ray Sources

(NASA)



OPTICAL IMAGE OF M51 (+NGC 5195)

(c) KPNO



M51 IN X-RAYS

(c) Chandra



M51 IN X-RAYS
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OPTICAL IMAGE OF M51 (+NGC 5195)

(c) KPNO



• Brighter than the Eddington luminosity for 
10 Msun BH: 

• Non-nuclear	
• Either sub-Eddington hosting intermediate 

mass BH or super-critical hosting BH or NS

ULTRALUMINOUS X-RAY 
SOURCES

L > LEdd(10M�) ⇡ 1039erg/s
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THIN ACCRETION DISKS

• The standard model of a thin disk (Shakura & Sunyaev 73, Novikov & 
Thorne 73) provides an analytic solution of a geometrically thin, 
optically thick, radiatively efficient disk 

• (Thermally unstable in the radiation pressure dominated regime)	
• Radiative efficiency and emission profile uniquely determined   

- independent of viscosity
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Ṁ . ṀEdd = LEdd/⌘c
2



SUPER-EDDINGTON DISKS

• Geometrically thick	
• Non-trivial, two-dimensional (turbulent) radiative transport	
• Large optical depths - photon trapping	
• Radiatively driven outflows	
• Sub-Keplerian	
• Require numerical solutions!
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Ṁ & ṀEdd



SIMULATING BH ACCRETION
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Essential components: 
• stationary space-time: 

(GR, Kerr-Schild metric)	
• magnetized gas: 

MHD (ideal)	
• photons: 

radiation transfer (simplified)	
• electrons: 

thermal & non-thermal 	
• radiative postprocessing: 

spectra, images	
• multidimensional fluid 

dynamics solver



SIMULATING ACCRETION
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KORAL  
radiative MHD code  
(Sadowski+13, …)	
!

HEROIC 
GR RTE solver  
(Zhu+15, Narayan+15)	
!
!
other groups performing  
(GR) radiative MHD: 	
 
Ohsuga+  
Jiang+, Fragile+, McKinney+, Gammie+, …



• GR ideal MHD + div B=0 	
• Radiation evolved simultaneously providing 

cooling and pressure	
• Radiative transfer under M1 approximation	
• Conservation of number of photons (allows 

for tracking the radiation temperature)	
• Comptonization	
• Independent evolution of thermal electrons 

and ions providing self-consistent 
temperatures	

• Synchrotron and bremmstrahlung Planck and 
Rosseland opacities dependent on both gas 
and radiation temperature	

• Coulomb coupling 	
• Self-consistent (depending on electron and 

ion temperatures) adiabatic index	
 
Sufficient set to study accretion flows at any 
accretion rate, including the intermediate 
regime
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KORAL
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HIGHLIGHTS OF SUPER-CRITICAL 
ACCRETION
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• super-Eddington accretion feasible 	
• geometrically and optically thick	
• photosphere far from the equatorial plane	
• radiatively driven outflows	
• significant photon  

trapping 
(affecting both  
radial and  
vertical radiation  
transport)	

• moderate beaming	
• observables strongly  

inclination dependent!



• General relativistic, grid base radiation transfer equation solver 	
• Frequency resolved radiation	
• Short- and long-characteristics	
• Comptonization via Kompaneets equation	
• Takes density, velocities and heating rate as input	
• Works efficiently for any optical depth
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(Narayan+15)

HEROIC 
3D GR RADIATIVE POSTPROCESSOR WITH COMPTONIZATION 



SUPER-CRITICAL ACCRETION
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photosphere

• high-inclination	
• moderate beaming  

- super-Eddington	
• hard spectrum	
• ULXs?

• low-inclination	
• ~Eddington	
• soft spectrum	
• ULSs? 

(ultraluminous supersoft)

wind
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30 DEG

(bolometric flux)



40 DEG
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SPECTRA 
vs inclination angle for              , a=0

i=10deg

i=20deg

i=30deg

i=40deg

10ṀEdd



RADIATIVE & KINETIC EFFICIENCY
• Anisotropic radiation field 

• Up to ~10 times Eddington apparent 
flux for near-axis observers and 10  
times Eddington accretion rate	

• But only ~Eddington apparent 
luminosity at larger inclinations	

• Low total radiative efficiency! 

• But the total energy extracted efficiently 
(total efficiency                ) 	

• The excess must go into the kinetic 
component (outflows)	

• The higher the accretion rate, the higher 
the fraction of energy output going into 
kinetic energy of the outflow!
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(Narayan+15)

1

ṀBH = 10ṀEdd

⇠ 3%Ṁc2



SPECTRA 
vs accretion rate for i=30deg, a=0

10

2

Spectrum is getting softer with Mdot because of increasing photosphere height 



NGC 1313 X-1

• Two distinct spectral states : softer/harder	
• Funnel opening angle (photosphere height) varies with accretion rate - 

strongly modifies obscuration for a given observer	

Middleton+15



SUPER-EDDINGTON ACCRETION
• Super-critical accretion disks are 

geometrically and optically thick  	
• Total radiative efficiency drops down 

with increasing transfer rate	
• Kinetic output balances the missing 

radiation	
• Radiation field anisotropic - along 

axis observers see super-Eddington 
fluxes when observers at large 
inclinations - just Eddington	

• Increasing transfer rate and the 
photosphere height may lead to 
obscuration and softer emission	

• However, simulations limited to the 
innermost region (R<100Rg)



MOVING TO LARGER SCALES - ULX BUBBLES

• Up to 25% ULX show ISM bubbles	
• Shock-ionized nebulae	
• Expansion velocity ~100 km/s	
• Radius ~ 100-200pc	
• Lifetime ~ 1Myrs	
• Often together with jet-related hot 

spots 

• Most likely inflated by long-lasting 
kinetic outflow from ULX with 
luminosity ~1e39 - 1e40 erg/s



EVOLUTION OF ULX BUBBLES
Project led by Magdalena Menz, Univ. of Glasgow



• Outflows from the accretion flow 
push out and shock ISM	

• Front / rear shocks form	
• Shocked wind hot but low density	
• ISM swept into a shell which 

collapses once cooling starts to be 
efficient	

• Expected opt/UV emission from the 
shocked ISM and X-rays from the 
shocked wind 

• Simulations performed with KORAL 
adopting free-free and bound-free 
opacities

Weaver 77

EVOLUTION OF ULX BUBBLES
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EVOLUTION OF ULX BUBBLES



• Luminosity dominated by optical/UV from shocked ISM	
• X-rays produced by the shocked wind	
• But the properties of the shocked wind depend on the properties of 

the outflow, e.g., the mass outflow rate, not only on the kinetic 
power!	

• We may learn a lot about the outflow if we look how they 
interact with ISM!

EVOLUTION OF ULX BUBBLES



SUPER-EDD ACCRETION - SUMMARY
• Numerical simulations are a powerful and often required tool 

to understand supercritical accretion flows	
• More work is required to  

implement better physics (double  
Compton, frequency dependent  
radiative transfer…)	

• Properties of the flow not unique  
and depend strongly on a number of  
parameters: accretion rate,  
BH spin, magnetic field properties,  
history of accretion?	

• Simulations limited to the inner  
region and short	

• Constraints from the other (large scale) end may be very 
helpful	

• Need for innovative numerical methods


