Simulations of BH Collisions in AdS Spacetimes

Paul Romatschke CU Boulder & CTQM & JET Collaboration Based on arXiv: 1410.4799 with Hans Bantilan

Outline

- Motivation
- Simulating BH Collisions
- Conclusions

Motivation Relativistic Ion Collisions

LHC

RHIC

Heavy-Ion Collisions

- 2003-present: QCD matter behaves fluid-like, not gas-like (despite asymptotic freedom)
- Large "flow" signals, e.g. v₂, v₃, v₄, v₅ in Pb+Pb collisions at LHC (correspond to l=2..5 in CMB Background)
- Hydrodynamic models correctly describe 99% of particles registered in experimental detectors

Light-on-Heavy-Ion Collisions

 Large "flow" signals, e.g. v₂, v₃ also found in d+Au, p+Pb collisions

[PR, 1502.04745]

QGP: Matter @ 4 Trillion K

- Temperature: $4x10^{12}$ K
- Lifetime: 10⁻²³ sec
- Size: 10⁻¹⁴ m

Gradients are large!

Why does hydrodynamics apply at all? Even for small systems (p+Pb)? Can we understand equilibration?

Motivation

Understand equilibration in relativistic ion collisions using AdS/CFT

Goal

Solve dynamical Einstein Equations (w/ or w/o additional fields) in asymptotic AdS for strong gravity situations (BH formation, BH collisions, etc.)

Want: general purpose tool to study farfrom equilibrium strongly coupled systems!

Einstein Field Equations in GH

$$0 = R_{\mu\nu} + \frac{2\Lambda}{2-d} g_{\mu\nu} - 8\pi \left(T_{\mu\nu} - \frac{1}{d-2} T^{\alpha}{}_{\alpha} g_{\mu\nu} \right) \\ -\kappa \left(2n_{(\mu}C_{\nu)} - (1+P)g_{\mu\nu}n^{\alpha}C_{\alpha} \right) - \nabla_{(\mu}C_{\nu)}$$

$$C^{\mu} \equiv H^{\mu} - \Box x^{\mu}$$

(physical solutions satisfy $C^{\mu} = 0$)

Slides from Hans Bantilan, CU Boulder, Oct 2014

Einstein Field Equations in GH

$$0 = + \frac{2\Lambda}{2-d}g_{\mu\nu} - 8\pi \left(T_{\mu\nu} - \frac{1}{d-2}T^{\alpha}{}_{\alpha}g_{\mu\nu}\right) -\kappa \left(2n_{(\mu}C_{\nu)} - (1+P)g_{\mu\nu}n^{\alpha}C_{\alpha}\right) - \nabla_{(\mu}H_{\nu)} + \underline{\nabla_{(\mu}\Box x_{\nu)}} - \frac{1}{2}g^{\alpha\beta}g_{\mu\nu,\alpha\beta} + \underline{g^{\alpha\beta}g_{\beta(\mu,\nu)\alpha}} + \frac{1}{2}g^{\alpha\beta}{}_{,\alpha}\left(g_{\alpha\beta,\nu} - g_{\nu\mu,\beta} + g_{\beta\nu,\mu}\right) - \left(\log\sqrt{-g}\right)_{,\mu\nu} + \left(\log\sqrt{-g}\right)_{,\beta}\Gamma^{\beta}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\nu\beta}\Gamma^{\beta}{}_{\alpha\nu} - g^{\alpha\beta}{}_{,(\mu}g_{\nu)\alpha,\beta}$$

$$C^{\mu} \equiv H^{\mu} - \Box x^{\mu}$$

(physical solutions satisfy $C^{\mu} = 0$)

Slides from Hans Bantilan, CU Boulder, Oct 2014

Einstein Field Equations in GH

$$0 = + \frac{2\Lambda}{2-d}g_{\mu\nu} - 8\pi \left(T_{\mu\nu} - \frac{1}{d-2}T^{\alpha}{}_{\alpha}g_{\mu\nu}\right) -\kappa \left(2n_{(\mu}C_{\nu)} - (1+P)g_{\mu\nu}n^{\alpha}C_{\alpha}\right) - \nabla_{(\mu}H_{\nu)} + \underline{\nabla_{(\mu}\Box x_{\nu)}} - \frac{1}{2}g^{\alpha\beta}g_{\mu\nu,\alpha\beta} + \underline{g}^{\alpha\beta}g_{\overline{\beta}(\mu,\nu)\alpha} + \frac{1}{2}g^{\alpha\beta}{}_{,\alpha}\left(g_{\alpha\beta,\nu} - \overline{g}_{\nu\mu,\beta} + g_{\beta\nu,\mu}\right) - \left(\log\sqrt{-g}\right)_{,\mu\nu} + \left(\log\sqrt{-g}\right)_{,\beta}\Gamma^{\beta}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\nu\beta}\Gamma^{\beta}{}_{\alpha\nu} - g^{\alpha\beta}{}_{,(\mu}g_{\nu)\alpha,\beta}$$

+evolution eq's for H^{μ}

$$C^{\mu} \equiv H^{\mu} - \Box x^{\mu}$$

(physical solutions satisfy $C^{\mu} = 0$)

We solve these numerically

Slides from Hans Bantilan, CU Boulder, Oct 2014

NUMERICAL RELATIVITY

Evolution Equations:

$$0 = -\frac{1}{2}g^{\alpha\beta}g_{\mu\nu,\alpha\beta} - g^{\alpha\beta}{}_{,(\mu}g_{\nu)\alpha,\beta}$$

$$-H_{(\mu,\nu)} + H_{\alpha}\Gamma^{\alpha}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\beta\mu}\Gamma^{\beta}{}_{\alpha\nu}$$

$$-\kappa \left(2n_{(\mu}C_{\nu)} - (1+P)g_{\mu\nu}n^{\alpha}C_{\alpha}\right)$$

$$-\frac{2}{3}\Lambda_{5}g_{\mu\nu} - 8\pi \left(T_{\mu\nu} - \frac{1}{3}T^{\alpha}{}_{\alpha}g_{\mu\nu}\right)$$

$$\downarrow$$

$$0 = \mathcal{L}_{f}|_{ij}^{n} \qquad (15 \text{ such equations, one for each } \mu\nu)$$

Use second-order differencing to discretize these

COORDINATE CHOICE NEAR THE ADS BOUNDARY

- Coordinate choice in asymptotically AdS spacetimes
 - not enough to simply demand b.c.s for g
 _{μν}, H
 μ, φ g{μν} = g^{AdS}_{μν} + (1 - ρ)[#]g
 _{μν} H_μ = H^{AdS}_μ + (1 - ρ)[#]H
 _μ φ = (1 - ρ)[#]φ

 how to choose H_μ so that b.c.s are preserved by evolution?
- Example: tt component of field equations near $\rho = 1$

$$\tilde{\Box}\bar{g}_{(1)tt} = (-8\bar{g}_{(1)\rho\rho} + 4\bar{H}_{(1)\rho})(1-\rho)^{-2} + \dots$$

- regularity requires a delicate cancellation between terms in the near-boundary limit
- smart coordinate choice: $\bar{H}_{(1)\rho} = 2\bar{g}_{(1)\rho\rho}$

Numerics/Hardware

- C,C++, Fully parallel (openMPI)
- Hardware used:
- Eridanus cluster (CU Boulder, 192 cores @ 2 GHz/core), Infiniband interconnections
- Orbital cluster (Princeton, ~3700 cores @ 3.5 GHz/core), Infiniband interconnections

Simulations of BH Collisions in Global AdS₅

- Head-on Collisions
- Global AdS rather than Poincare patch
- Initial Data: pure AdS + massless scalar field (Coulomb branch), quickly collapsing to form BHs (non-planar horizon!)
- Use excision to simulate space-times with BHs

Heavy Ion Collisions as BH Collisions in AdS₅

'nuclear collisions' in 3+1d as shock wave collisions in AdS₅:

 $T_{++} \propto
ho(x_{\perp}) \delta(x^+)$

$$ds^2 = rac{-2dx^+dx^- + dx_\perp^2 + dz^2 + dx^{+2}\Phi(x_\perp,z)\delta(x^+)}{z^2}$$

 $\lim_{z \to 0} rac{\Phi(x_\perp,z)}{z^4} = rac{
ho(x_\perp)}{\kappa}$

Heavy Ion Collisions as BH Collisions in AdS5

- Two infinitely boosted 'nuclei' superimposed become two shock waves in gravity
- Extremely high-energy analogue of black-hole collisions (Aichelburg-Sexl shock waves)
- Hard to treat collision process via numerical relativity
- Some insight may be gained analytically

The anti-de Sitter Spacetime

- The AdS₅ spacetime
 - its boundary is causally connected to its interior
 - spacelike infinity \cup null infinity
 - forms a timelike 4-surface
 - identified with $\mathbb{R} \times S^3$

FIGURE: Conformal sketch of the AdS₅ spacetime; there is an internal 2-sphere geometry at each point of this sketch. Hans Bantilan, CU Boulder, Oct 2014

Metric, separation D=0.5

Metric, separation D=0.7

The anti-de Sitter Spacetime

- The AdS₅ spacetime
 - its boundary is causally connected to its interior
 - spacelike infinity \cup null infinity
 - forms a timelike 4-surface
 - identified with $\mathbb{R} \times S^3$

FIGURE: Conformal sketch of the AdS₅ spacetime; there is an internal 2-sphere geometry at each point of this sketch. Hans Bantilan, CU Boulder, Oct 2014

Space-time Diagram of the Bulk

[Bantilan and PR, 1410.4799]

[Bantilan and PR, 1410.4799]

"Collision" velocities

Comparison to Hydrodynamics on $\mathbb{R}^{3,1}$

[Bantilan and PR, 1410.4799]

Boundary Energy Density

[Bantilan and PR, 1410.4799]

Simulations of BH collisions

- We have numerical results for metric in all of space-time, including boundary data
- We have metric data (a bit) inside trapped surfaces: could be useful for entanglement entropy calculations (?)
- Metric data/boundary data could be used for comparison to analytic results
- This data is publicly available. If you can't find something on our website, just ask!

AdS/CFT Phenomenology

Can AdS/CFT dynamics be experimentally probed in relativistic ion collisions?

AdS+hydro+cascade ("SONIC")

[van der Schee, PR & Pratt, PRL111 (2013)]

AdS+hydro+cascade

AdS+hydro+cascade

AdS+hydro+cascade

AdS/CFT+hydro results are independent of choice of switching time

> You get what you get. No 'tuning'

Central Temperature Evolution

SONIC works well for describing exp' data in AA

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

Strong vs. Weak Coupling

[van der Schee, PR & Pratt, 2013] [Epelbaum, Gelis, 2013]

How about making more comparisons like these???

A way to probe QCD pre-eq flow?

superSONIC: p,d,3He+Au @ 62.4 GeV

Turbulent Gravity

ω

[Adams, Chesler, Liu 2013]

Planar Horizon (Black Brane)

[Gorda & Bantilan, unpublished]

No/Poincare Horizon

Turbulent Gravity

[Gorda & Bantilan, unpublished]

Summary/Conclusions

- General Purpose numeric solutions to Einstein Equations in asymptotic AdS using GH
- Successful numerical solutions for BH collisions in global AdS₅
- AdS (preeq)+Hydro(eq)+Hadron Cascade works surprisingly well in describing experimental data
- More results (e.g. AdS stability) coming soon!

Bonus Material

NUMERICAL RELATIVITY

Evolution Equations:

$$0 = -\frac{1}{2}g^{\alpha\beta}g_{\mu\nu,\alpha\beta} - g^{\alpha\beta}{}_{,(\mu}g_{\nu)\alpha,\beta}$$

$$-H_{(\mu,\nu)} + H_{\alpha}\Gamma^{\alpha}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\beta\mu}\Gamma^{\beta}{}_{\alpha\nu}$$

$$-\kappa \left(2n_{(\mu}C_{\nu)} - (1+P)g_{\mu\nu}n^{\alpha}C_{\alpha}\right)$$

$$-\frac{2}{3}\Lambda_{5}g_{\mu\nu} - 8\pi \left(T_{\mu\nu} - \frac{1}{3}T^{\alpha}{}_{\alpha}g_{\mu\nu}\right)$$

$$\downarrow$$

$$0 = \mathcal{L}_{f}|_{ij}^{n} \qquad (15 \text{ such equations, one for each } \mu\nu)$$

Use second-order differencing to discretize these

NUMERICAL RELATIVITY

Evolution Equations:

 $0 = \mathcal{L}_f|_{ij}^n$ (15 such equations, one for each $\mu\nu$)

Solve by a Newton-Gauss-Seidel iterative scheme:

- three-level scheme at time levels t^{n+1} , t^n , t^{n-1}
-
o knowns: $f_{ij}^n,\,f_{ij}^{n-1},$ unknowns: f_{ij}^{n+1}
- the f_{ij}^n are used as an initial guess for the f_{ij}^{n+1}
- o one iteration step:

 $\tilde{f}_{ij}^{n+1} \to \tilde{f}_{ij}^{n+1} - \frac{\mathcal{R}_f|_{ij}^n}{\mathcal{J}_f|_{ij}^n} \qquad (\mathcal{R}_f|_{ij}^n = \mathcal{L}_{\tilde{f}}|_{ij}^n \text{ and } \mathcal{J}_f|_{ij}^n = \frac{\partial \mathcal{L}_f|_{ij}^n}{\partial f_{ij}^{n+1}})$ (letting \tilde{f}_{ij}^{n+1} be an approximate solution)

• iterate until $\mathcal{R}_f|_{ij}^n$ becomes sufficiently small

THE ANTI-DE SITTER SPACETIME

- The AdS₅ spacetime
 - its boundary is causally connected to its interior
 - − spacelike infinity \cup null infinity
 - forms a timelike 4-surface
 - identified with $\mathbb{R} \times S^3$

FIGURE: Conformal sketch of the AdS₅ spacetime; there is an internal 2-sphere geometry at each point of this sketch. Hans Bantilan, CU Boulder, Oct 2014

Asymptotically anti-de Sitter Spacetimes

- An asymptotically AdS_5 spacetime
 - its boundary is causally connected to its interior
 - spacelike infinity \cup null infinity
 - forms a timelike 4-surface
 - identified with $\mathbb{R} \times S^3$
 - metric in local coordinates:

$$\left\{ \begin{array}{ll} g_{mn} - g_{mn}^{AdS} \sim (1-\rho)^2 \\ g_{\rho\rho} - g_{\rho\rho}^{AdS} \sim (1-\rho)^2 \\ g_{\rho m} - g_{\rho m}^{AdS} \sim (1-\rho)^3 \end{array} \text{ as } \rho \to 1 \end{array} \right.$$

for $x^m = (t, \chi, \theta, \phi)$ boundary coordinates and ρ AdS radial coordinate

FIGURE: Conformal sketch of an asymptotically AdS_5 spacetime that preserves the SO(3) symmetry that rotates a 2-sphere at each point.

The anti-de Sitter Spacetime

- The AdS₅ spacetime
 - its boundary is causally connected to its interior
 - spacelike infinity \cup null infinity
 - forms a timelike 4-surface
 - identified with $\mathbb{R} \times S^3$

FIGURE: Conformal sketch of the AdS₅ spacetime; there is an internal 2-sphere geometry at each point of this sketch. Hans Bantilan, CU Boulder, Oct 2014

NUMERICAL RELATIVITY

Initial Data:

 $0 = \mathcal{L}_{\zeta}|_{ij}$ (5 such equations, one for each μ)

Solve by a multigrid method:

1. Compute residual on fine grid

$$\mathcal{R}_{\zeta_h} = \mathcal{L}_{ ilde{\zeta}_h}.$$

- 2. Inject fine grid residual \mathcal{R}_{ζ_h} and approx soln $\tilde{\zeta}_h$ onto coarse grid $\mathcal{R}_{\zeta_h} \to \mathcal{R}_{\zeta_{\text{inj}}}$, $\tilde{\zeta}_h \to \tilde{\zeta}_{\text{inj}}$.
- 3. Find approx soln $\tilde{\zeta}_{2h}$ on coarse grid by solving difference equation $\mathcal{L}_{\zeta_{2h}} = d_{2h}$ for $d_{2h} = \mathcal{L}_{\zeta_{inj}} - \mathcal{R}_{\zeta_{inj}}$.
- 4. Compute correction on coarse grid $\tilde{v}_{2h} = \tilde{\zeta}_{2h} - \tilde{\zeta}_{inj}.$
- 5. Interpolate correction from coarse grid to fine grid $\tilde{v}_{2h} \rightarrow \tilde{v}_h$.
- 6. Generate next approx on fine grid using coarse-grid correction $\tilde{\zeta}_{h}^{\text{new}} = \tilde{\zeta}_{h} + \tilde{v}_{h}.$

NUMERICAL RELATIVITY

Other ingredients:

- Kreiss-Oliger style numerical dissipation
- Apparent horizon finder and excision
- Lapse damping
- Coordinate choice near the AdS boundary

COORDINATE CHOICE NEAR THE ADS BOUNDARY

- Coordinate choice in asymptotically AdS spacetimes
 - not enough to simply demand b.c.s for g
 _{μν}, H
 μ, φ g{μν} = g^{AdS}_{μν} + (1 - ρ)[#]g
 _{μν} H_μ = H^{AdS}_μ + (1 - ρ)[#]H
 _μ φ = (1 - ρ)[#]φ

 how to choose H_μ so that b.c.s are preserved by evolution?
- Example: tt component of field equations near $\rho = 1$

$$\tilde{\Box}\bar{g}_{(1)tt} = (-8\bar{g}_{(1)\rho\rho} + 4\bar{H}_{(1)\rho})(1-\rho)^{-2} + \dots$$

- regularity requires a delicate cancellation between terms in the near-boundary limit
- smart coordinate choice: $\bar{H}_{(1)\rho} = 2\bar{g}_{(1)\rho\rho}$

Infiniband connections essential

Lnxfarm: single node, multiple cores used

Eridanus: single core on <u>different</u> nodes used

From Bulk to Boundary

CONFORMAL FIELD THEORY DUAL

- Bulk field / CFT operator
 - e.g. metric dynamics / CFT stress tensor one-point function $\bar{g}_{\mu\nu}(x^m, \rho) \qquad \langle T_{\mu\nu}(x^m) \rangle_{\rm CFT}$
- How do bulk fields encode boundary CFT operators?

$$\left\langle T_{\mu\nu}\right\rangle_{\rm CFT} = \lim_{\rho \to 1} \left[\frac{1}{8\pi} \left({}^{(\rho)}\Theta_{\mu\nu} - {}^{(\rho)}\Theta\Sigma_{\mu\nu} - \frac{3}{L}\Sigma_{\mu\nu} + {}^{(\rho)}G_{\mu\nu}\frac{L}{2} \right) - t_{\mu\nu} \right]$$

Given a $\rho = \text{const.}$ time-like hypersurface ∂M_{ρ} , ${}^{(\rho)}\Theta_{\mu\nu} = -\Sigma^{\alpha}{}_{\mu}\Sigma^{\beta}{}_{\nu}\nabla_{(\alpha}S_{\beta)}$ is the extrinsic curvature of ∂M_{ρ} , S^{μ} is a space-like, outward pointing unit vector normal to the surface ∂M_{ρ} , $\Sigma_{\mu\nu} \equiv g_{\mu\nu} - S_{\mu}S_{\nu}$ is the induced 4-metric on ∂M_{ρ} , ∇_{α} is the covariant derivative operator, and ${}^{(\rho)}G_{\mu\nu}$ is the Einstein tensor associated with $\Sigma_{\mu\nu}$. Setting L = 1, the non-zero components of the (non-dynamical) Casimir contribution $t_{\mu\nu}$ that we have explicitly subtracted above are $t_{tt} = 3(1-\rho)^2/(64\pi)$, $t_{\chi\chi} = (1-\rho)^2/(64\pi)$, $t_{\theta\theta} = (1-\rho)^2 \sin^2 \chi/(64\pi)$, and $t_{\phi\phi} = t_{\theta\theta} \sin^2 \theta$.

Shocks with Transverse Profiles

[van der Schee, PR & Pratt, 2013]

Use AdS/CFT initial conditions and compare to data

- Idea: pre-equilibrium flow for smooth, central collisions is simple
- Parametrize as

$$v^r(\tau, r) = -\frac{\tau}{3}\partial_r \ln T_A^2(r)$$

[Habich, Nagle and PR, 1409.0040] and use for different collision systems (Pb+Pb, Au+Au, Cu+Cu, Al+Al, C+C, p+p)

Compare:

$$\frac{T_{0x}}{T_{00}} \approx -\frac{\partial_x T_{00}}{2T_{00}}t,$$

[Scott & Vredevoogd, PRC79 2009]

Central Temperature Evolution

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

SONIC: AdS+Hydro (eta/s=0.08)+Hadron Cascade

