Jet Break in M87: Fundamental Property in AGN Jets

Masa Nakamura (ASIAA, Taiwan)

Institute for Theoretical Physics Seminar, Goethe University, Frankfurt, Germany, 12/04/2015

Fowards the 100th Anniversary of the Discovery of Cosmic Jets

M87 Workshop May 23-27 2016, ASIAA, Taipei

Web.: http://events.asiaa.sinica.edu.tw/workshop/20160523/index.php act: m87ws2016@asiaa.sinica.edu.tw

TOPICS

Registration & Abstract Submission (- 2016/02/15)

- SMBHs; mass, spin, and imaging of BH silhouettes
- BH accretion flows; from Bondi radius to the horizon \bullet
- BH Jets; from the horizon to galactic scale \bullet
- Co-evolution of galaxy and black hole: AGN feedback \bullet
- High energy emissions in LLAGNs; their sites and mechanisms

SOC: P. Ho (ASIAA, Chair)

- L. Ho (KIAA, Vice-chair, keynote speaker)
- **R. Blandford** (Stanford, keynote speaker)
- A. Fabian (IoA, Keynote speaker)
- R. Narayan (CfA, Keynote speaker)
- K. Asada (ASIAA, Secretary)
- M. Nakamura (ASIAA, Secretary)

Image courtesy (left: Francisco Diez, middle: J.-C. Algaba, right: Greenland telescope)

Invited Speakers (*TBD):

K. Asada (ASIAA), J. Biretta (STScI), G. Bower (ASIAA), A. Broderick (U. Waterloo), E. Churazov (MPA), S. Doeleman (MIT Haystack), *A. Doi (JAXA), J. Hawley (U. Virginia), A. Levinson (Tel Aviv U.), B. McNamara (U. Waterloo), H. Li (LANL), *D. Meier (Caltech), S. Mineshige (Kyoto U.), M. Mościbrodzka (Radboud U.), M. Nakamura (ASIAA), E. Perlman (FIT), W. Potter (U. Oxford), Ł. Stawarz (Jagiellonian U.), A. Tchekhovskoy (UCB), *C. Walker (NRAO), J. Walsh (Texas A&M U.)

Outline

- Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation
- MHD Jet global structure and dynamics under the BH gravitational influence and beyond
- MAD in Action; how large is the BH spin?
- Lessons learned from M87; "jet break" in AGNs may be norm in the BH-galaxy co-evolution?
- Summary

Puzzle Has Remained Unsolved During decades

GRMHD (1st ever) Steady Inflow/Outflow Solutions for a Parabolic Streamline

GRMHD Simulation (a =0.9375)

 B_p field lines and characteristic surfaces

Steady GRMHD (cold) solution (a =0.9375)

B_p field: parabolic solution (Blandford & Znajek 1977) + perturbation (Beskin & Nokhrina 2006)

McKinney (2006)

Pu, MN, + (2015), ApJ

Open Question 1: How Acceleration/ Collimation in MHD jets is Terminated? inflow - ---- outflow

0 (degree)

E_{FL}/µ |E_{EM}/µ|

-FL/µ |LEM/µ|

¢⊓

١Ľ

an⁻¹(|Ē^r/Ē[∲]|)

Pu, MN+ (2015), ApJ; qualitatively consistent with McKinney (2006)

- Capability of cold RMHD jet acceleration 10^{1} can be measured by the total (matter + $\theta_{\rm i} \propto z^{(1-a)/a}$ Poynting)-to-matter energy flux ratio: 10⁰ 10² $\frac{\mu}{-} = 1 + \sigma$ $\Gamma \propto z^{(a-1)/a}$ 10^{1} 10⁰ σ : Poynitng-to-matter energy flux ratio 10³ $\Gamma\theta \sim 0.1$ 10² $\gamma_{\infty} \simeq \mu \left(\sigma_{\infty} \simeq 0 \right)$ c.f., Jorstad+ (2005) 10¹ Pushkarev+ (2009) Clausen-Brown+ (2013) 10^{0} $\mu \sim 10^{1-3}$ 10^{1} (Beskin 2010; Nokhrina+ 2015) 10⁰ $\mu \simeq 10$ 10⁻¹ would be $\Gamma \bar{B}^r / \bar{B}^\phi \simeq 1$ 10⁰ quasi F-F; e.g., Lyutikov+ (2005) norm? $\sigma_{\infty}\simeq 0$ Clausen-Brown+ (2011) 10^{-1} 10⁰ 10^{1} 10^{2}

r (c²/GM) along a streamline that threads the EH at mid-latitude (similar to McKinney 2006)

Transition found in MOJAVE AGNs

- A transition from positive to negative acceleration seems to locate at ~ 10 pc (Lister+ 2013; Homan+ 2015) \Rightarrow ~ 100 pc or longer in de-projection
- Non-ballistic flows are strongest at < 10 pc; jets are expanding less rapidly than z ∝ r, so that jets is still being collimated (Homan+ 2014; also Pushkarev & Kovalev 2012 w/ T_b analysis)

SL Motions Upstream of HST-1

EVN Observations@1.6GHz

Asada, MN+ (2014), ApJL

A Missing Link Has Been Filled

Asada, MN+ (2014), *ApJL*

Jet Structure and Dynamics in M87

Asada & MN (2012), ApJL; MN & Asada (2013), ApJ; Asada, MN+ (2014), ApJL

Outline

- Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation
- MHD Jet global structure and dynamics under the BH gravitational influence and beyond
- MAD in Action; how large is the BH spin?
- Lessons learned from M87; "jet break" in AGNs may be norm in the BH-galaxy co-evolution?
- Summary

Open Question 2: How Are GRMHD Jets Confined?

- Quasi-steady jet is formed, while corona/wind are highly turbulent (~ 2,000 MG/c^3)

- Global jet structure is unchanged even after the MRI in the corona is saturated
- Gas pressure-dominated corona may not confine the jet, suggesting the jet and corona/wind may be a force-free on the small scale (< 100 r_s)

Outer Boundary of GRMHD Jets

Trails of Components?

Trails of MHD Shocks?

MN, Garofalo, & Meier (2010), ApJ

Quad RMHD Shock Model

z (pc) MN, Garofalo, & Meier (2010), ApJ; MN & Meier (2014), ApJ z (pc)

Outline

- Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation
- MHD Jet global structure and dynamics under the BH gravitational influence and beyond
- MAD in Action; how large is the BH spin?
- Lessons learned from M87; "jet break" in AGNs may be norm in the BH-galaxy co-evolution?
- Summary

RIAF in M87

MAD in Action in M87?

-Magnetically Arrested Disk (MAD)

(Bisnovatyi-Kogan & Ruzmaikin 1974, 1976; Narayan 2003; Tchekhovskoy+ 2011; Tchekhovskoy & McKinney 2012; Zamaninasab+ 2014)

$$\phi_{\bullet} = \frac{\Phi_{\bullet}}{(\langle \dot{M}_{\bullet} \rangle r_{\rm g}^2 c)^{1/2}} \approx 50 \; (\text{spin} - \text{average})$$
for a MAD state (F_G ≈ F_B)

$$\dot{M}_{\bullet} \simeq 6.3 \times 10^{-4} \left(\frac{R}{10r_{\rm s}}\right)^{0.5} M_{\odot}/{\rm yr}$$

 10^{45}

Jet power : P_{j} [erg/s]

(e.g., Kuo, Asada+ 2014; Russell+ 2015)

200

150

Outline

- Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation
- MHD Jet global structure and dynamics under the BH gravitational influence and beyond
- MAD in Action; how large is the BH spin?
- Lessons learned from M87; "jet break" in AGNs may be norm in the BH-galaxy co-evolution?
- Summary

Case 2: FRI RG

Tseng, Asada, MN+, submitted to ApJL

Summary

- M87: The best observable for examining the AGN jet with the highest angular resolution (1 mas ~ 125 r_s)
 - 1.Sub-mm VLBI will reveal the origin of the jet in M87 as well as the jet inner structure for blazers (non-BK79?)
 - 2.VSOP obs. reveals the jet spine (BZ77), while the jet sheath may be the outermost streamline (BP82) from BH
 - 3.Jet acceleration/collimation takes place in the parabolic stream up to ~ $10^5 r_s$ (inside the sphere of BH influence)
 - 4.GRMHD jet sim./MAD scenario may give the BH spin as a > 0.7
 - 5.We propose that the "Jet Break" (from parabolic; BP82 to conical; BK79) may be norm in AGNs