Extragalactic sources and ultra-high energy cosmic rays

Athina Meli (Peter Biermann, John Quenby, Julia Tjus, Paolo Ciarcelluti)

> Faculty of Sciences Department of Physics and Astronomy University of Ghent Belgium

Seminar Goethe University Frankfurt am Main 09 June 2015

Outline

- Cosmic-ray spectrum characteristics
- Sources (non- & relativistic)
- Shocks and jets
 - Properties
 - Particle acceleration mechanism
- Shock acceleration simulation studies overview
 - Numerical method
 - Individual and multiple relativistic shocks in AGN
 - Propagation and radiation
- Conclusion

Cosmic-rays

- Cosmic-rays are subatomic particles & radiation of extra-terrestrial origin.
- First discovered in 1912 by Victor Hess, measuring radiation levels aboard a balloon up to 5300m
- Hess found increased radiation levels at higher altitudes: named it Cosmic Radiation

Cosmic-ray spectrum

Energies and rates of the cosmic-ray particles

The high energy regime - 'knee(s)' & 'ankle'

The ultra-high energy regime – the 'toe'

	TA	Auger
γ_1	3.33 ± 0.04	3.27 ± 0.02
γ_2	2.68 ± 0.04	2.68 ± 0.01
γ_3	4.2 ± 0.7	4.2 ± 0.1
$lg(E_1/eV)$	18.69 ± 0.03	18.61 ± 0.01
$lg(E_2/eV)$	19.68 ± 0.09	19.41 ± 0.02

Seminar Frankfurt University, June 09 2015

Sources: Non-relativistic Relativistic

Sources: Non-relativistic Relativistic

Supernovae

SN 1987A

Sources: Non-relativistic Relativistic

A 'hidden force' in extragalactic jets: Shocks

Individual or multiple shocks

Supersonic/superalfvenic strong compression waves → change gas/plasma's v, d, p, T - Collisional shocks (ordinary fluid) - Colissionless astrophysical shocks: In diffuse regions, low densities, large bulk speeds

PKS 1510-089

Shock classification - magnetic field orientation

Shock jump-conditions (Rankine-Hugoniot relations)

 \rightarrow HD jump conditions (planar shocks, $[X]_1^2 \equiv X_2 - X_1$)

$$\begin{split} \left[\rho_m V_z\right]_1^2 &= 0 \qquad \text{mass conservation} \\ \left[\rho_m \vec{V} V_z + p \vec{e}_z\right]_1^2 &= 0 \qquad \text{momentum cons.} \\ \left[\frac{1}{2}\rho_m V^2 V_z + \gamma p V_z / (\gamma - 1)\right]_1^2 &= 0 \qquad \text{energy cons.} \end{split}$$

→ MHD
$$[\rho_m V_z]_1^2 = 0 \left[\rho_m \vec{V} V_z + \left(p + \frac{B^2}{2\mu_0} \right) \vec{e}_z - \frac{B_z \vec{B}}{\mu_0} \right]_1^2 = 0 \left[\left(\frac{1}{2} \rho_m V^2 + \frac{\gamma p}{\gamma - 1} + \frac{B^2}{\mu_0} \right) V_z - \frac{B_z \vec{B} \cdot \vec{V}}{\mu_0} \right]_1^2 = 0 [B_z]_1^2 = 0 [V_z \vec{B}_t - B_z \vec{V}_t]_1^2 = 0$$

Rankine (1870), Hugoniot (1887) Parker (1965), Hudson (1965), Parks (1984)

Particle acceleration mechanism at shocks

No doubt collisionless *astrophysical* shocks accelerate particles

Convincing evidence (early 80s) for efficient acceleration in heliospheric shocks and in SNRs

The Fermi mechanism

Transfer of the macroscopic kinetic energy of moving magnetized plasma to individual charged particles \rightarrow non-thermal distribution

2nd order Fermi acceleration (Fermi '49,'54)

@magnetic plasma clouds

1st order Fermi acceleration - diffusive acceleration

(Krymskii '77, Bell '78, Blandford & Ostriker '78, Axford et al. '78)

@plasma shocks

1st order Fermi acceleration – diffusive acceleration of CRs

Test particle - diffusion - n acceleration shock cycles

 $E_n = (x+1)^n \cdot E_0$

Energy gain: fraction of initial energy

$$\Delta E = E - E_0 = x \cdot E_0$$

Average energy gain per collision:

 $<\Delta E/E>\cong (2V/c)$

Leading to a power-law energy behaviour

$$N(>E) = \sum_{i=n}^{\infty} (1 - P_{esc})^{n(E)} = ... \propto E^{-\sigma}$$

$$\sigma = (r+2)/(r-1), r = V_1/V_2 = (\gamma+1)/(\gamma-1)$$

for mono-atomic gas: $\gamma = 5/3 \Rightarrow r = 4 \Rightarrow E^{-2}$

Important: <u>Non-relativistic shocks</u>: σ is *constant* (~ 2.2) independent of shock-B inclination (Drury, '83) Relativistic shocks: Different story...

(e.g. Krymskii '77, Bell '78, Drury '83)

Note: Facts for non-relativistic shock acceleration

- Particles are everywhere in <u>isotropy</u> and the diffusive approximation for solution of the transport equation can apply
- Spectral index (σ) <u>independent</u> of: scattering nature (κ), inclination (ψ) and strength of magnetic field (B)

Concepts are well understood and well studied - they work well as a comparison basis for *relativistic* studies

Acceleration time scale & diffusion

The acceleration rate wins in competition with the time scale of the energy *losses* and the *escape rate*, defining the limit for the possible highest energies to be achieved.

Acceleration rate:

 $\tau(E) = (E \cdot \tau_{cycle}) / \Delta E = [3/(V_1 - V_2)] (\kappa_1 / V_1 + \kappa_2 / V_2) \text{ (Drury '83)}$

Confinement distance

One cycle:

$$\tau_{cycle}$$
 (E)= (4/c)($\kappa_1/V_1 + \kappa_2/V_2$)

Diffusion coefficient:

 $\kappa = \kappa_{\parallel} \cos^2 \psi$ $\kappa_{\parallel} = (1/3)\lambda \upsilon$ $\lambda = 10r_l$ (Quenby & Meli '05)

i.e. Proton 10GeV: κ about 10²² cm²/s $\rightarrow \tau_{cvcle}$ about 10⁴ sec

Simulations of relativistic shock acceleration

Relativistic shock acceleration: Questions

- Is spectral index (σ) <u>universal</u>? Flat or steep?
- o depends on: gamma shock speed, inclination and scattering modes (turbulence of the media) ?
- Efficient acceleration → UHECRs ?
 - see: Ellison et al. (1995), Meli & Quenby (2003a,b, 2005), Niemec & Ostrowski (2004), Ellison & Double (2004), Stecker et al. (2007), Meli et al. (2008)

Numerical approaches

- Semi-analytic solutions to diffusion-convection equation
 (e.g. Eichler '84, Berezhko & Ellison '99, Blasi & Gabici '02-'05)
- Numerical solutions to diffusion-convection equation with flow hydrodynamics & momentum dependent diffusion (e.g. Berezhko, Voelk et al. '96, Kang & Jones '91-'05, Malkov '97-'01)
- Monte Carlo simulations ('test-particle' approach)
 (e.g. Ellison et al. '02-'12, Baring '03-'13, Meli et al. '03-'14)

Particle-in-cell (PIC) simulations

(e.g. Dieckmann, Meli, et al. '08-'10, Nishikawa et al. (Meli), '13,'14)

Monte Carlo 'test-particle' approach principles

- Notion of 'test-particles' very efficient & very fast in describing particle random walks - large number of particles
- Random number generation → simulation of the random nature of a physical process (Cashwell & Everett '59)
- Powerful tool \rightarrow large dynamic ranges in spatial and momentum scales
- Scattering can be treated via large angle and pitch angle diffusion approach (e.g. Kennel & Petscheck '66, Forman et al. '74, Jokipii '87, Quenby & Meli '05, Meli & Biermann '06)

$$\kappa = \kappa_{\parallel} \cos^2 \psi + \kappa_{\perp} \sin^2 \psi \qquad \kappa_{\perp} = \kappa_{\parallel} \cdot (1 + (\lambda/r_l)^2)^{-1} \qquad \kappa_{\parallel} \gg \kappa_{\perp}$$

- Fully relativistic Lorentzian transformations
- Pesc (probability of escape)

Relativistic jets and UHECRs: Individual shocks Multiple shocks

Relativistic jets and UHECRs: Individual shocks Multiple shocks

Athina Meli, Ghent University

Sub-luminal (oblique) shocks - spectra

Scattering : $1/\Gamma < \theta < 10/\Gamma$

Super-luminal (perpendicular) shocks - spectra

Superluminal shocks \rightarrow Not efficient accelerators \rightarrow Irregular spectra

Application to extragalactic astronomy

Contribution to the diffuse UHE cosmic-ray signal ?

Fitting between: 3EeV and 30EeV

<u>Black line</u>: assumed contribution of UHECR from GRBs with flat spectra, σ =1.5.

<u>**Red line</u>**: half-half contribution with σ =1.5 and σ =2.1 respectively.</u>

Blue line: only UHECRs from AGN with σ =2.1.

After averaging various spectra, we assume that a diffused proton spectrum measured at Earth is given by:

$$\frac{\mathrm{d}N_{\mathrm{p}}}{\mathrm{d}E_{\mathrm{p}}} = A_{\mathrm{p}} \int_{z_{\mathrm{min}}}^{z_{\mathrm{max}}} \left(x \cdot \frac{\mathrm{d}\Phi_{2.1}}{\mathrm{d}E_{\mathrm{p}}} (E_{\mathrm{p}}(z)) + (1-x) \cdot \frac{\mathrm{d}\Phi_{1.5}}{\mathrm{d}E_{\mathrm{p}}} (E_{\mathrm{p}}(z)) \right)$$
$$\times (1+z)^{-1} \cdot \exp\left(-\frac{E_{\mathrm{p}}(z)}{E_{\mathrm{cut}}(z)}\right) \cdot g(z)\mathrm{d}z$$

<u>Condition 1</u>: UHECRs produced in subluminal relativistic shocks with spectra of mean $\sigma = -2.1$, contribute a fraction $0 \le x \le 1$, and UHECRs with flat spectra of $\sigma = -1.5$ contribute 1-*x*. (0.001<*z*<7)

> <u>Condition 2</u>: We take into account particle propagation, adiabatic energy losses, source evolution g(z), absorption at the highest energies and normalized the flux using observations above the ankle.

Meli and Ciarcelluti (2014)

Relativistic jets: Individual shocks Multiple shocks

Model: Multiple shock patterns and cosmic-ray acceleration in extragalactic jets with a single particle-injection (Meli and Biermann, 2013)

Repeated multiple shocks with opening angles *a*, *b*, *c*, *d*, in an AGN jet, e.g., PKS 1510-086, CenA, M87, NGC6251, etc

Proton spectra at the source (in a shock sequence)

Meli & Biermann (2013)

Cosmic-rays \iff gamma-ray and neutrino astronomy

Radiation by cosmic-rays

Leptonic continuum emission from AGN

Hadronic interactions

Simulations of extragalactic *propagation* of *hadronic* cosmic-rays

by W.Wagner

Questions answered:

- UHECRs seem to originate from extragalactic sources such as AGN and GRB jets
- Relativistic shocks *individual or multiple* can accelerate UHECRs with a variety of spectral features
- Spectral index of the *primary* spectrum (σ) is <u>not universal</u>: observations \rightarrow *gamma-rays, neutrinos*
- σ depends on: shock speed, inclination and scattering modes (turbulence of the media)
 - Faster shocks generate flatter distributions
 - Subluminal (quasi-parallel) shocks efficient accelerators $\rightarrow \sim 10^{21} \, \text{eV}$ (!)
 - Superluminal (quasi-perpendicular) shocks not efficient → ~10¹⁵ eV

Take home lesson (Monte Carlo CR studies)

Relativistic *individual or multiple shocks* in extragalactic jets are powerful engines, producing very high energy CR via the Fermi acceleration mechanism with *distinctive spectral features* and *consequent radiation*

Immediate applications to extragalactic observational astronomy:

✓ Hadronic radiation models

Gamma-ray & neutrino astronomy

Multi-messenger approach

