Effects of neutron star dynamic tides on gravitational waveforms within the Effective One-Body approach

arXiv:1602.00599

Tanja Hinderer
(University of Maryland)

A. Taracchini F. Foucart K. Hotokezaka
A. Buonanno M. Duez K. Kyutoku
J. Steinhoff L. E. Kidder M. Shibata
H. P. Pfeiffer M. A. Scheel B. Szilagyi
C. W. Carpenter M. A. Scheel

Astrophysics seminar Goethe Universität Frankfurt June 14, 2016
Overview

• **Motivation**: potential to determine properties of ultra-dense matter using gravitational waves from NS-NS and NS-BH binaries
 - multimessenger studies (sGRBs, afterglows, neutrinos)
 - sources of r-process elements

• Requires robust models

• Recent improvements: **dynamical tides** during inspiral

• **Tidal Effective One-Body** model

• Conclusions
Neutron stars (NSs)

- strongest gravitational environment where matter can stably exist
- other extremes of physics:
 - spins up to 38000 rpm, huge magnetic fields, superfluidity, superconductivity, solid crust, …

- 1939: theoretical prediction [Oppenheimer & Volkoff]
- 1968: discovery of pulsars [Hewish, Bell, +]
- 1969: pulsars = neutron stars [Gold]
- > 2000 observed to date (~1/1000 stars)
- masses ≳ Msun, radii ~ 10km
- matter compressed to several times nuclear density

What is the nature of matter in such extreme conditions?
Phases of the strong force

H$_2$O

QCD (conjectured)

Neutron stars (NSs)

[credit: Garrido]

[Wambach+2011]
NS structure

- **crust**: $\sim km$
- **outer core**: \sim few km
- uniform liquid?
- **deep core**: $\geq 2 \times \rho_{\text{nuclear}}$
- exotic states of matter?
- deconfined quarks? condensates?

- **Theoretical difficulties:**
 - many-body problem with strong interactions
 - unknown composition and equation of state (EoS)

- **Experiments**: properties of neutron-rich nuclei, phases of the strong force

 impossible to reproduce conditions in NSs
NS global properties from microphysics

- composition, multi-body forces, etc., reflected in the EoS
- EoS determines observables (mass, radius, …)

Einstein’s field equations

Pressure vs. density

Mass vs. radius

[Özel & Freire 2016]
NS radius measurements

- **Masses**: to \(\sim 0.0001\% \) from pulsar timing
- **Radii**: difficult to determine

Thermonuclear X-ray bursts

![Thermonuclear X-ray bursts](image)

- Quiescent low-mass X-ray binaries, isolated cooling NS
- Millisecond pulsars: X-ray pulse shape of rotating hot-spot

![Millisecond pulsars](image)

- X-ray intensity vs. time relative to burst start

![X-ray intensity vs. time](image)

[Galloway+2006]
Results for NS radii

systematic uncertainties:
- distance
- atmosphere
- size of emitting region
- surface composition
- identification of spectral features
- magnetic field
-

Examples of results

potentially more robust EoS measurements with gravitational waves (GWs)
- asymmetric rotating NSs (crust physics)
- coalescing binaries

[Lattimer & Steiner 2014]
Gravitational waves (GWs) in brief

- Matter and energy curve space and warp time
- That **curvature** is responsible for **gravity**

- Accelerating masses generate **ripples in curvature**: GWs.

- Fractional deviation away from flat space:

 \[
 h \sim \frac{G}{c^4} \frac{\ddot{I}}{D} \sim \frac{G}{c^4} \frac{mv^2}{D} \sim 10^{-22}
 \]

 \[
 \approx 8 \times 10^{-45} \frac{s^2}{\text{kg m}}
 \]

- Carry **enormous power**: \(\approx 10^{51}\) Watts (c.f. sun radiates \(\approx 10^{26}\) Watts)

- Interact **very weakly** with matter.

- Also produced by processes in the early universe, supernova explosions, asymmetric pulsars …
Measuring GWs with interferometers

- change in intensity due to difference in phase:

\[\Delta \phi = 2\pi f \frac{2\Delta L}{c} = \frac{4\pi f}{c} h(t) L \]

- laser frequency
- extra roundtrip travel time in the arm
Worldwide network of GW detectors

LIGO Hanford (WA)
L = 4 km

LIGO Livingston (LA)
L = 4 km

Advanced LIGO
first observing run completed
~ 2019 design sensitivity

Advanced Virgo major hardware upgrade almost completed

GEO 600

KAGRA
~ 2020 +

LIGO India
~ 2020 +
GW signal from black hole (BH) binaries

- BHs: regions of extreme spacetime curvature, characterized completely by only mass & spin

![Diagram showing the process of GW signal generation from black hole binaries](image)

- Inspiral: the orbit shrinks...
- Merger/ringdown: ...until they collide, ...and merge into a single BH...
- Velocity: ~0.6 c, orbital period ~10 ms...

![Waveform graph](image)
GW signal from BH binaries

- details of the waveform depend on the parameters (masses, spins, …)

<table>
<thead>
<tr>
<th>Type</th>
<th>Waveform</th>
</tr>
</thead>
<tbody>
<tr>
<td>equal mass, no spin</td>
<td></td>
</tr>
<tr>
<td>unequal mass, no spin</td>
<td></td>
</tr>
<tr>
<td>equal mass, with spins</td>
<td></td>
</tr>
</tbody>
</table>

courtesy A. Taracchini

- extracting the information from the signal requires highly accurate models as templates for data analysis
Approaches to the two-body problem

Newtonian dynamics

post-Newtonian theory

black hole perturbation theory

Numerical relativity

timescales:
\[T_{\text{orbit}} \sim M \left(\frac{r}{M} \right)^{3/2} \]
\[T_{\text{inspiral}} \sim M \left(\frac{M}{\mu} \right) \left(\frac{r}{M} \right)^{4} \]
Approaches to the two-body problem

- **Newtonian dynamics**
- **Newtonian theory**
- **Black hole perturbation theory**

Orbital separation r/M

LIGO band

Test particle limit

Path to merger

Mass ratio M/μ

Timescales:

$T_{\text{orbit}} \sim M \left(\frac{r}{M}\right)^{3/2}$

$T_{\text{inspiral}} \sim M \left(\frac{M}{\mu}\right) \left(\frac{r}{M}\right)^{4}$
Approaches to the two-body problem

Newtonian dynamics

Effective One-Body (EOB) model:

combines all information into a complete waveform model for LIGO searches

[Buonanno, Damour 1999, 2000]
Effective-One-Body (EOB) approach

Binary problem

- Hamiltonian for the dynamics:
 \[H_{EOB}(r, p_r, p_\phi; M, \nu) = M \sqrt{1 + 2\nu \left(\frac{H_{eff}}{\mu} - 1 \right)} \]

- radiation reaction forces
- factorized waveforms

Effective description

\[ds^2_{eff} = -A(M, \nu, r)dt^2 + B(M, \nu, r)dr^2 + r^2d\phi^2 \]

\[A = 1 - \frac{2M}{r} + \nu \delta A^{PN}(r; M, \nu) \]

effective Hamiltonian \(H_{eff} \)

lengthy PN description

\(\nu = \mu / M \)

MAP
Evolve the two-body dynamics up to the light ring (spherical photon orbit)

Smooth transition

Ringdown: quasinormal modes (QNM) of final BH
Performance of EOB waveforms

numerical relativity

EOB

m_1 = m_2, S_1 = S_2 = 0.98 S_{max}

no tuning

tuned

GW cycles

[courtesy A. Taracchini]

- recent extension to precessing spins [Taracchini+ 2016]
GW150914 detected by LIGO

[LSC 2016]
The importance of models for GW150914

- establish >5σ detection significance
- measure source properties
- perform tests of general relativity

![Graph showing detection statistic and number of events](image)

Detection statistic $\hat{\rho}_c$

- 2σ, 3σ, 4σ, 5σ, >5.1σ

Number of events

- GW150914 search result
- Search Background
- Background excluding GW150914

Tests of general relativity

[LSC 2016]
Experimental progress

- LIGO’s visible volume of the universe for GWs from double neutron stars:

 ![Diagram showing the visible volume of the universe for GWs from double neutron stars](credit: atlasoftheuniverse)
GW signal from NS-NS binaries

NS-NS \(\approx\) point-masses

last \(~ 20\) cycles

rich characteristic frequency spectrum \(> kHz\)

BH-BH

merger

post-merger

collapse to BH

\(>10^3\) GW cycles

[data from T. Dietrich]
GW signal from NS-BH binaries

- NS-BH
- BH - BH

≈ point-masses

larger modeling uncertainty in point-mass GWs than for NS-NS

tidal effects

small \sim \frac{1}{(1 + q)^5}

q = \frac{m_{\text{BH}}}{m_{\text{NS}}}

tidal disruption or plunge

GW shutoff can be in aLIGO band

[data from F. Foucart]
Tidal effects during inspiral

- dominant effect:

\[Q_{\text{NS}} = -\lambda \varepsilon_{\text{tidal}} \]

induced quadrupole
tidal deformability
companion’s tidal field

\[\lambda = \frac{2}{3} \frac{k_2 R^5}{M} \]

\(\text{Love number} \)

\(\text{NS radius} \)

Einstein’s Eqs: linear perturbations to equilibrium sol.

\[\text{[One 2nd order ODE]} \]

pressure - density

\(\lambda \)- mass

credit: B. Lackey
• **Energy** goes into deforming the NS

\[E \sim E_{\text{orbit}} - \frac{1}{4} Q_{\text{NS}} e_{\text{tidal}} \]

• moving tidal bulges contribute to gravitational radiation

\[\dot{E}_{\text{GW}} \sim \left[\frac{d^3}{dt^3} (Q_{\text{orbit}} + Q_{\text{NS}}) \right]^2 \]

• **GW phase** from energy balance:

\[\frac{d \phi_{\text{GW}}}{dt} = 2\Omega, \quad \frac{d\Omega}{dt} = \frac{\dot{E}_{\text{GW}}}{dE/d\Omega} \]

tidal contribution:

\[\Delta \phi_{\text{GW}}^{\text{tidal}} \sim \lambda \frac{(v/c)^{10}}{M^5} \]

Influence on the GW phase

- **Tidal phase** contribution in the stationary phase approx.:

\[
\psi_{\text{tidal}} = \frac{3}{128 \nu x^{5/2}} \left[-\frac{39}{2} \tilde{\Lambda} x^5 + \left(-\frac{3115}{64} \tilde{\Lambda} + \frac{6595}{364} \sqrt{1 - 4 \nu} \delta \tilde{\Lambda} \right) x^6 \right]
\]

- most sensitive to the weighted average:

\[
\tilde{\Lambda} = \frac{8}{13} \left[(1 + 7 \nu - 31 \nu^2) \left(\frac{\lambda_1}{m_1^5} + \frac{\lambda_2}{m_2^5} \right) + \sqrt{1 - 4 \nu} (1 + 9 \nu - 11 \nu^2) \left(\frac{\lambda_1}{m_1^5} - \frac{\lambda_2}{m_2^5} \right) \right]
\]

- for identical NSs:

\[
\tilde{\Lambda} = \frac{\lambda}{m_{\text{NS}}^5} \quad \delta \tilde{\Lambda} = 0
\]
Approximate universality

- weak EoS-dependence between many NS quantities, e.g.:
 - “I - Love - Q“ [moment of inertia, tidal Love number, rotational quadrupole]
 - NS binaries: merger frequency \(f_{\text{peak}} \), post-merger spectrum

[Read+2013] [Rezzolla&Takami 2016] [Yagi & Yunes 2013]
What to expect from aLIGO+Virgo

• “standard” NS-NS event rate (40/yr), ~1 yr of data [some caveats with the analysis]:
 • λ to ~10-50 %, radius to ~1-2 km, pressure to ~ factor of 2 [Lackey+2014]

• similar conclusions with hybrid NR waveforms [Shibata+2016]

• NS-BH systems: λ/m^5 to ~ 10-100 % [Lackey+ 2013]
Recent model improvement: dynamic tides

- Q_{NS} corresponds to the NS’s fundamental oscillation modes
 - eigenfrequency: $\omega_f \sim \sqrt{m_{NS}/R^3}$ (internal structure-dependent)
- **tidal forcing** frequency: $m\Omega \sim m\sqrt{M/r^3}$

NS’s response to the tidal field

$$\lambda_\ell = \frac{2(\ell-2)}{(2\ell-1)!!} k_\ell R^{2\ell+1}$$

Love number

$H4$ EoS, $m_{NS}=1.35M_\odot$
EOB Hamiltonian with tidal effects

- **adiabatic tides (AT):** \(A = A^{pp}(M, \nu, r) + \lambda_\ell A^{AT}(M, \nu, r) \) [Damour, Nagar, Bini+2009-2014]

- **dynamic tides:** effective description of from approximate solutions for \(Q_{NS} \):
 \[
 A = A^{pp}(M, \nu, r) + \lambda_\ell^{\text{eff}}(M, \nu, r, \lambda_\ell, \omega_f) A^{AT}(M, \nu, r)
 \]

- good agreement with full evolution:
 \[H_{\text{EOB}}(r, p_r, p_\phi, Q_{\ell m}, P_{\ell m}; M, \nu, \lambda_\ell, \omega_f) \]

\[
\text{ds}_{\text{eff}}^2 = -Adt^2 + Bdr^2 + r^2d\phi^2
\]
Performance of the tidal EOB model

Nonspinning NS-BH mass ratio 2:1
$\Gamma=2$ polytropic
$C=0.1444$

GW cycles

$\Delta \phi_{22} \, [\text{rad}]$

$t - r^*/M$

Re(D_{h2}/M)

NR error

Adiabatic tides

BH-BH

Dynamic tides
Performance of the tidal EOB model

- Nonspinning NS-BH mass ratio 2:1
- $\Gamma = 2$ polytropic
- $C = 0.1444$

Graph Details:
- **Re($D_l h_{22}/M$)**
- **(t - r*)/M**
- **Δϕ22 [rad]**
- **GW cycles**

Tides:
- Dynamic tides
- Adiabatic tides
- Self-force

Models:
- EOB
- NR

Enhancements:
- Enhanced tidal EOB

[Bernuzzi+]
Conclusions

- Main imprint of NS microphysics in the GWs from **inspirals**: tidal effects
- **Dynamic** f-mode tides can be significant, now included in **EOB**
- Also included: NS-BH **tidal disruption signal** (nonspinning case)

Outlet:

- Further **improve models** and measurement potential, **reduce systematics** (inspiral, NS-BH tidal disruption, NS-NS merger/post-merger)
- Include **more realistic physics**
- **Accurate NR** simulations are crucial to inform model developments
- data analysis strategies (e.g. parameterization)
- connection with multimessenger signals
Thank you