Hydrodynamical study on the conversion of hadronic matter to quark matter

Shock Induced Conversion Phys. Rev. D 93, 043018 (2016)

Diffusion Induced Conversion Phys. Rev. D 93, 043019 (2016)

Shun Furusawa

(National Astrophysical Observatory of Japan \Rightarrow FIAS)

collaborator : Shoichi Yamada (Waseda University) The other work: Core Collapse Supernovae (5/30 FIGSS seminar) 05/10 2016 Astro Coffee

Introduction: Quark Stars

- Mass Radius Relations
- different cooling curves
- Quark Nova (10⁵³ erg neutrinos are emitted)

B Diffusion induced Case HM⇒SQM with small strangeness ⇒ SQM

A. Shock induced Case Spin Down of (P)NS Accretion on (P)NS

•Merger of compact stars

B. Diffusion induced Case
Following Shock induced
Capture of strangelets

Shock induced Case

Combustion modes

Previous works (Olint '87, Benvenuto'89 Mishustin '14, Drago '15)

Structures inside the front are not solved.

 Endothermic case is neglected in reference to terrestrial combustion Herzog '11

Pagliara '13

Previous works

- Structures inside the front are not solved.
- Endothermic case is neglected due to a strained interpretation.

Motivation of Our works:

- 1, What happens inside combustion front when QS is formed?
- 2, Which combustion modes are realized for the two scenarios.
- 3, List up all possible structures inside the front for wide ranges of parameter s in EOS of QM and initial condition.

QMEOS (Farhi et al. 84, Fischer et al. 10)

MIT Bag Model Larger Bag constant ⇒softer Larger Strong Coupling Constant α ⇒stiffer

$$P = \sum_{f=u,d,s} P_f + B$$

$$\epsilon = \sum_{f} \epsilon_f + B$$

$$P_f(\alpha_s) = P_f(0) - \left[\frac{7}{60}T^4\pi^2 \frac{50\alpha_s}{21\pi} + \frac{2\alpha_s}{\pi} \left(\frac{1}{2}T^2\mu_f^2 + \frac{\mu_f^4}{4\pi^2}\right)\right]$$

Parameters in QM EOS

 $B^{1/4}$ [MeV]

Model Shock Induced case

- •1D Steady flow
- Conservation Eq. of

Hydrodynamics with viscos terms

• β equilibration ($\tau = 10^{-8}$ s)

 $u \frac{df_s}{dx} = \frac{f_s^{eq} - f_s}{\tau}$ $\rho v = \text{Const.}$ $P + \rho v^2 - \nu \frac{dv}{dx} = \text{Const.}$ $h + \frac{1}{2}v^2 - \frac{\nu}{\rho}\frac{dv}{dx} = \text{Const.}$

• PNS HM (Shen EOS '11) $Y_{lep} = 0.3$ $T_i = 10 \text{MeV}$ $\rho_i = 3 \times 10^{14} \text{ g} / \text{cm}^3$

•QM (T.Fischer 10)
 Bag Model (B:Bagconstant) +
 Strong interaction(α: coupling c.)

Mixed Phase in the front
Volume Fraction of QM and HM QM: HM= r : (1-r)
Global Charge Neutrality $\mu_p = 2\mu_{up} + \mu_{dn}$ $\mu_n = \mu_{up} + 2\mu_{dn}$ $P^H = P^Q$ $T^H = T^Q$

Complete-Deconfinement Case $B^{1/4} = 140$ [MeV]

 $\alpha_s = 0.4$ $M_i = 3.0$

①shock compression HM(x<6)</pre>

②deconfinement starts @x~6 HM& 2QM

③deconfinement
finishes
@x~9 2QM

④3QM toward β eq. (9<x<20) 3QM

Incomplete-Deconfinement Case $B^{1/4} = 140 \text{ [MeV]}$ $\alpha_s = 0.6$ $M_i = 3.0$ (1)shock compression HM(x<7.5)

②deconfinement starts @x~7.5 HM& 2QM

(3) shock compression stop and s quarks appear @(x~12)

③deconfinement
finishes
@x~12 3QM

④3QM toward β eq.(18<x<30) 3QM

2, Model diffusion induced case

•1D Steady flow (local analysis)
•Conservation Eq. of Hydrodynamics
•Diffusion Equation of Strange quarks

$$v\frac{df_s}{dx} - D\frac{d^2f_s}{dx^2} = \frac{f_{s,f} - f_s}{\tau}$$
$$\rho v = \text{Const.}$$
$$P + \rho v^2 = \text{Const.}$$
$$h + \frac{1}{2}v^2 = \text{Const.}$$

• PNS HM (Shen EOS '11) $Y_{lep} = 0.3$ $T_0 = 10 MeV$ $\rho_0 = 3 \times 10^{14} g / cm^3$

•QM (T.Fischer 10)
 Bag Model (B:Bagconstant) +
 Strong interaction(α: coupling c.)

Mixed Phase in the front
Volume Fraction of QM and HM QM: HM= r : (1-r)
Global Charge Neutrality $\mu_p = 2\mu_{up} + \mu_{dn}$ $\mu_n = \mu_{up} + 2\mu_{dn}$ $P^H = P^Q$ $T^H = T^Q$

 $\begin{array}{l} \text{Result} \\ (B^{1/4} = 140 \ [\text{MeV}] \ \alpha_s = 0.4 \) \end{array}$

x=0 start of deconfinemetx~0.5 end of deconfinementx>0.5 equilibration to 3QM

 $u_i = 2.3 * 10^4 \text{ cm/s}$

Result :Evolution of component in the front $(B^{1/4} = 140 \text{ [MeV]} \alpha_s = 0.4)$

EndothermicExothermic $B^{1/4} = 140 \text{ [MeV]} \ \alpha_s = 0.4$ $B^{1/4} = 125 \text{ [MeV]} \ \alpha_s = 0.8$

Both cases show weak deflagrations

STABILITY OF THE COMBUSTION FRONT

(c) $t = 1.2 \,\mathrm{ms}$

Summary

We have cleared the structure of combustion front.

- •The type of combustion
 - diffusion induced case: weak deflagration
 - shock induced case: strong detonation
- Even in Endothermic Case, Combustion can take place !!
 - Conversion front of deflagration is stable in Endothermic Case
 - There are some conversion patterns
 - Complete- or Incomplete- deconfinement

Future Works

dependence of Surface tension, EoS of HM (underway)

- Conversion from Hyperonic to 3QM and 3QM to HM
- Dynamical Simulation from NS to QS.

EOS dependence

Diffusion Constant Dependence

 $u_i \propto \sqrt{D} \propto \mu/T$ Front velocities are highly dependent on T & ρ

EOS dependence

 $u_i \sim 4.3 \times 10^4$ cm/s for fs=0.1 $u_i \sim 11.6 \times 10^4$ cm/s for fs=0.2 .Combustion velocity depends on Fraction of Strangeness at x=0.

Relativistic scheme $B^{1/4} = 140 \text{ [MeV]}, \ \alpha_s = 0.6 \text{ and } M_i = 2.5$

