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Basics: Action Principle, Principles of Relativity, Gauge Principle

Minimal Set of Basic Principles

@ Action Principle: The system dynamics follows from the variation of

its action S, namely §S 2 0.

@ Special Principle of Relativity: The action integrand must be
form-invariant (symmetric) under (global) Lorentz transformations.

© General Principle of Relativity: The action integrand must be
form-invariant (symmetric) under local Lorentz transformations.

@ Gauge Principle: Promoting a global symmetry of a given system to a
local symmetry by adding appropriate gauge fields yields a theory
which is realized in nature.

© Quadratic Momentum: The action integrand should contain a
quadratic momentum term for the dynamics of the gravitational field
— in analogy to the dynamics of all other fields.
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Basics: Action Principle, Principles of Relativity, Gauge Principle

Overview

@ Aim: Derive the theory of gravity from first principles along the line of
non-Abelian gauge theories.

@ Method: Canonical transformations ensure by construction that the
action principle is preserved. Then, an action form-invariant under the
diffeomorphism group implements the General Principle of Relativity.

© Key results:

e the connection coefficients are the gauge fields of gravity
e gauge theory determines the coupling of base fields and gauge fields
e each type of base field (scalar, vector, tensor, spinor; massive or
massless) has its particular coupling term
o the Lagrangian/Hamiltonian for the “free” spacetime dynamics must
be postulated
e Einstein's General Relativity is the particular case of
(i) Hilbert Lagrangian (Ricci scalar) for the “free” spacetime dynamics
(ii) scalar or massless vector base fields
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Basics: Action Principle, Principles of Relativity, Gauge Principle Action Principle for static spacetime

Hamiltonian action principle for static spacetime
Action principle for a system of real scalar and vector fields (static metric)
a¢ B 83ﬁ 4
S = /Q (ﬂ-aﬁxa +p a(?? —H(ﬂ”,gb,p””,ay,x”)) d*x

with

85 =0, 66|,0 = 0au|yn = 0.

Calculus of variations: §S = 0 holds exactly for the solutions of the

Covariant canonical field equations
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Hamiltonian action principle for dynamic spacetime
Action principle generalized for a dynamic metric
0a 0 7 ~
+ pPo 29 | [pra T8RN s o 4
S— /( + P S 4 ke S8 (w,qﬁ,p,a,k,g,x))dx
with \/—g d*x the invariant volume form and the tensor densities

Fh=iy—g, PV =pE KV =1Vy—g, H=H/

gpa(x) denotes the system’s metric and g the metric's determinant.

Extended set of covariant canonical field equations
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Canonical gauge formalism Canonical transformations under dynamic spacetime

Requirement of form-invariance for the action principle

For a gauge theory that includes a general mapping of spacetime x — X,
we need the connection coefficients 'Vnag as additional dynamic quantities

Condition for canonical transformations under a dynamical spacetime
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@ The integrands must be world scalar densities in order to be
form-invariant under general spacetime transformations.

@ ~~ The partial derivatives must be promoted to covariant derivatives.
@ ~~> The connection coefficients «y, I are the gauge quantities.
° .7:"15 is the generating function of the canonical transformation x — X.
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Basics: Action Principle, Principles of Relativity, Gauge Principle Example: Klein-Gordon Hamiltonian in a dynamic spacetime

Klein-Gordon Hamiltonian in a dynamic spacetime

Example (Hamiltonian for the dynamics of a real scalar field)

The Klein-Gordon Hamiltonian with spacetime-dependent metric gqg(x) is

the field equations emerge as
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Canonical gauge formalism Canonical transformations under dynamic spacetime

General CT rules under dynamic spacetime

Legendre transf.: ff(gb, ®.a,A8,G,7,x)— ]3"5(7”1, . p, Ak, G,3, I, x)
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Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Generating function

The generating function .Iz"éf is devised to define the required mappings

ox“ Ix® Ox*
(D(X) = ¢(X)’ AH(X) = aa(x)wa GZIH(X) = ga/\(x) 8XVM
and . P
K Y- xT OxT OX* X X"~
It is given by
7 oxs dXE aXA
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~ ]-"B simultaneously defines the transformation rules for the conjugate

momentum fields 7, p, k g and for the Hamiltonian H.
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e
The “free” gauge field Hamiltonian Hpy,

As common to all gauge theories,

@ the gauge formalism yields merely the coupling terms of the fields of
the given system 7L to the gauge fields,

@ the gauge formalism does not provide the Hamiltonian 7:[Dyn
describing the dynamics of the “free” gauge fields,
here: the dynamics of the A/E(w(x) in classical vacuum,

@ the Hamiltonian 7:[Dyn for the dynamics of the “free” gauge fields
must be added “by hand”, based on physical reasoning,

o the “free gauge field Hamiltonian” ?:[Dyn accounts for the residual
indeterminacy of any gauge theory, here: the gauge theory of gravity.

Final action functional is a world scalar < general principle of relativity

S :/Q (7?5@25;5 + ﬁaﬁ da;8 + ke 8o — %E’nagﬁRnagﬂ ~H - f’qDyn) d*x

with a form-invariant Hamiltonian ?:[Dyn(k, 3.8) = HDyn(R, Q,G).
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Form-invariant action functional — gauge Hamiltonian
Generally invariant action principle

We thus encounter the “gauged” Hamiltonian Fg (after “some algebra”!)
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Inserting the Hamiltonian H¢ into the above action functionals yields

~ ~ Ta\ 1x 7] )/ 4
s :/Q (#6,5 + B a0ip + k8 gas — 38,"BR", ¢ — ) dx.

@ The partial derivatives of the fields ¢, a,, and g, in the original
action functional are indeed converted into covariant derivatives.

@ In contrast, the partial derivatives of the non-tensorial gauge fields

fy"ag cannot be converted into covariant derivatives.

@ Miraculously, the terms of the calculated gauge Hamiltonian He

complement these derivatives to the Riemann curvature tensors R" atp
/16

Canonical gauge formalism Coupled set of canonical field equations

Canonical field equations for given H and ?—N[Dyn
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Throughout tensor equations ~ form-invariant in any reference frame.
”HDyn must be postulated, ’HDyn = 0 & flat metric comp. spacetime.
It includes possible torsion (s* 50 7 0) and non-metricity (gex;, # 0).
~~ Most general set for the coupled dynamics of fields and spacetime.
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Canonical gauge formalism Einstein-type equations

Consistency relation of the canonical field equations

From the canonical equations, one directly derives the

Energy-momentum balance relation

OkrBA L, TG Euf gup
=23 ﬁ _~vB 87:[ 4 2 ﬁ
~Ba, P 9prE T Mg,

2kvPA —87:[Dyn _ g ThA _87:2]33’“ g vBA a/}:szﬂ ) a/}'NlDyn

= (9#” < canonical E-M tensor.

It can be shown to have the equivalent Lagrangian representation
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which actually represents a generalized Einstein equation.
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Conclusions

Conclusions and Outlook

@ Key results of the gauge theory of gravity:

o the connection coefficients 7“7 are the gauge fields of gravity

e the Hamiltonian 7-lDyn for the “free gauge fields"”, i.e. for the gravity
dynamics in classical vacuum must be postulated

e gauge theory provides us with the coupling of fields and gauge fields

e each type of field (scalar, vector, tensor, spinor; massive, massless) has
its particular spacetime coupling — which is beyond the Einstein theory

e e.g.: spacetime coupling of spin fields yields an effective mass term
— analogy to the Pauli coupling term of a spinor in a magnetic field

@ Actual work:

e Discussion of physically reasonable options for 7—~lDyn and their
respective cosmological consequences
e Discussion of the cosmological consequences of the modified coupling
of massive vector (spin-1) fields to spacetime
o Discussion of the emerging effective mass term of spin-!/, fields with
respect to e.g. the neutrino mass issue
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Canonical gauge formalism Einstein-type equations

Generalized Einstein equation

The Einstein equation proper is thus the particular case if:
@ The dynamics of the “free” gravitational field is described by the
Hilbert Lagrangian Lpy, o< R = Rﬁaﬁug’w‘
@ The system satisfies the metric compatibility condition g,z., = 0
@ The system is torsion-free with a symmetric Ricci tensor R,
@ The system Lagrangian £ describes the dynamics of a scalar field
(and possibly a massless vector field).

The source term is then given by Hilbert's metric energy-momentum

tensor 7, s 2 ALVB) L

Yo V-g 0ghP ’
Yet, if the given system comprises a massive vector field, the source term
of the generalized Einstein equation is given by the canonical E-M tensor
6,”, which then differs from the metric E-M tensor T ," by a divergence:
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Conclusions
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